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Burgers’ flows as Markovian diffusion processes
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We analyze the unforced and deterministically forced Burgers equation in the framework of the~diffusive!
interpolating dynamics that solves the so-called Schro¨dinger boundary data problem for random matter trans-
port. This entails an exploration of the consistency conditions that allow one to interpret dispersion of passive
contaminants in Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation

] tr52¹W (vW r), wherevW 5vW (xW ,t) stands for the Burgers field andr is the density of transported matter, is at
variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterization
of the diffusive transport that is governed by Burgers velocity fields. The result extends both to the approxi-
mate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible
medium. Also, in conjunction with the Born statistical postulate in quantum theory, it pertains to the proba-
bilistic ~diffusive! counterpart of the Schro¨dinger picture quantum dynamics. We give a generalization of this
dynamical problem to cases governed by nonconservative force fields when it appears indispensable to relax
the gradient velocity field assumption. The Hopf-Cole procedure has been appropriately generalized to yield
solutions in that case.@S1063-651X~97!04302-X#

PACS number~s!: 02.50.2r, 05.20.2y, 03.65.2w, 47.27.2i
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I. BURGERS VELOCITY FIELDS AND THE RELATED
STOCHASTIC TRANSPORT PROCESSES

The Burgers equation@1,2# recently has acquired consid
erable popularity in a variety of physical contexts@3–20#. An
exhaustive discussion of its role in acoustic turbulence
gravitational contexts, where the emergence of shock p
sure fronts is crucial, can be found in Ref.@17#.

As is well known, the logarithmic Hopf-Cole transforma
tion @2# allows one to replace the nonlinear problem~nonlin-
ear diffusion equation@1#! by a linear parabolic equation
Because of this equivalence all gradient-type solutions of
Burgers equation are known exactly.

At the moment we shall preserve the gradient form
striction for Burgers velocity fields, but consider a more ge
eral form of the Burgers equation that accounts for an ex
nal force fieldFW (xW ,t):

] tvW 1~vW •¹W !vW 5nDvW 1FW ~xW ,t !. ~1!

Let us mention that many recent investigations were devo
to the analysis of curlvW 50W solutions that are statistically re
evant in view of the random initial data choice and/or inc
sion of the random forcing term~the random potential in the
related Parisi-Kardar equation@11#!.

However, irrespective of whether we do or do not ne
the statistical input, an issue of matter transport driven
those nonlinear velocity fields requires the knowledge of
exact evolution of concentration and/or density fields, mu
in the spirit of early hydrodynamical studies of advection a
diffusion of passive tracers@21,22#; see also@23#. This par-
ticular issue is addressed in the present paper, under a
plifying assumption of nonrandom initial data and determ
istic force fields.

Following the traditional motivation~applicable both to
incompressible and infinitely compressible liquids@1#!, we
551063-651X/97/55~2!/1401~12!/$10.00
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regard the stochastic diffusion process as a primary phen
enon responsible for the emergence of Eq.~1! and thus jus-
tifying the ‘‘nonlinear diffusion equation’’ phrase in thi
context.

Knowing the Burgers velocity fields, one is tempted
ask what is the particular dynamics~of matter or probability
density fields! that is consistent with the chosen Burgers v
locity field evolution. The corresponding passive sca
~tracer or contaminant! advection-in-a-flow problem
@14,11,16# is normally introduced through the parabolic d
namics:

] tT1~vW •¹W !T5nDT; ~2!

see, e.g.,@21–23#. For incompressible fluids, Eq.~2! coin-
cides with the conventional Fokker-Planck equation for
diffusion process. This feature does not persist in the co
pressible case.

While looking for the stochastic implementation of th
microscopic~molecular! dynamics, Eq.~2! @11,16,23,24#, it
is assumed that the ‘‘diffusing scalar’’~contaminant in the
lore of early statistical turbulence models! obeys an Itoˆ equa-
tion:

dXW ~ t !5vW ~xW ,t !dt1A2ndWW ~ t !, ~3!

XW ~0!5xW0→XW ~ t !5xW ,

where the given forced Burgers velocity field is perturbed
the noise term representing a molecular diffusion. In the~by
now conventional! Itô representation of diffusion-type ran
dom variableXW (t) one explicitly refers to the standar
Brownian motion~e.g., the Wiener process! A2nWW (t), in-
stead of the usually adopted formal white noise integ
*0
t hW (s)ds, coming from the Langevin-type version of Eq

~3!.
1401 © 1997 The American Physical Society
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1402 55GARBACZEWSKI, KONDRAT, AND OLKIEWICZ
Under these premises, while taking for granted thatthere
is a diffusion process involved, we cannot view Eqs.~1!–~3!
as completely independent~disjoint! problems: the velocity

field vW cannot be quite arbitrarily inferred from Eq.~1! or
any other velocity-defining equation without verifying th
consistencyconditions, which would allow one to associa
Eqs. ~2! and ~3! with a well defined random dynamics, an
Markovian diffusion in particular@25,26#.

In connection with the usage of Burgers velocity fiel
~with or without external forcing!, which in Eqs.~3! clearly
are intended to replace the standardforward drift of the
would-be involved Markov diffusion process, we have n
found in the literature any attempt to resolve apparent c
tradictions arising if Eqs.~2! and/or~3! are defined by mean
of Eq. ~1!. In particular, the usage of a continuity equati
] tr52¹W (vW r), wherevW 5vW (xW ,t) stands for the Burgers field
andr is the density of transported matter, is at variance w
the explicit diffusion scenario. Also, an issue of the nec
sarycorrelation ~cf. @16#, Chap. 7.3, devoted to the turbule
transport and the related dispersion of contaminants! be-
tween the probabilistic Fokker-Planck dynamics of the d
fusing tracer, and this of the passive tracer~contaminant!
concentration@Eq. ~2!#, has been left aside in the literature

Moreover, rather obvious hesitation could have been
served in attempts to establish the most appropriate m
transport rule, if Eqs.~1!–~3! are adopted. Depending on th
particular phenomenological departure point, one eit
adopts the standard continuity equation@3,4#, that is certainly
valid to a high degree of accuracy in the low viscosity lim
~we refer to the standard terminology that comes from v
cous fluid models; here,n stands for the diffusion constan!
n↓0 of Eqs.~1!–~3!, but incorrect on mathematical ground
if there is a diffusion involvedandsimultaneously a solution
of Eq. ~1! is interpreted as the respectivecurrentvelocity of
the flow: ] tr(xW ,t)52¹W •@vW (xW ,t)r(xW ,t)#. Alternatively, fol-
lowing the white noise calculus tradition telling that the s
chastic integralXW (t)5*0

t vW „XW (s),s…ds1*0
t hW (s)ds implies

the Fokker-Planck equation, one adopts@24#: ] tr(xW ,t)
5nDr(xW ,t)2¹W •@vW (xW ,t)r(xW ,t)#, which is clearly problem-
atic in view of the classic McKean’s discussion of the prop
gation of chaos for the Burgers equation@27–29# and the
derivation of the stochastic ‘‘Burgers process’’ in this co
text: ‘‘the fun begins in trying to describe this Burgers m
tion as the path of a tagged molecule in an infinite bath
like molecules’’ @27#.

To put things on solid ground, let us consider a Marko
ian diffusion process, which is characterized by the transit
probability density~generally inhomogeneous in space a
time law of random displacements! p(yW ,s,xW ,t),0<s,t<T,
and the probability densityr(xW ,t) of its random variable
XW (t),0<t<T. The process is completely determined
these data. For clarity of discussion, we do not impose
spatial boundary restrictions, nor fix any concrete limiti
value ofT which, in principle, can be moved to infinity.

The conditions valid for anye.0: ~a! there holds

limt↓s
1

t2sEuyW2xW u.e
p~yW ,s,xW ,t !d3x50,
t
n-
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~b! there exists a~forward! drift

bW ~xW ,s!5 limt↓s
1

t2sEuyW2xW u<e
~yW2xW !p~xW ,s,yW ,t !d3y,

and ~c! there exists a diffusion function~in our case it is
simply a diffusion coefficientn)

a~xW ,s!5 limt↓s
1

t2sEuyW2xW u<e
~yW2xW !2p~xW ,s,yW ,t !d3y,

are conventionally interpreted to define a diffusion proc
@25,26#. Under suitable restrictions the function

g~xW ,s!5E p~xW ,s,yW ,T!g~yW ,T!d3y ~4!

satisfies the backward diffusion equation@notice that the mi-
nus sign appears, in comparison with Eq.~2!#

2]sg~xW ,s!5nDg~xW ,s!1@bW ~xW ,s!•¹W #g~xW ,s!. ~5!

Let us point out that the validity of Eq.~5! is known to be a
necessarycondition for the existence of a Markov diffusio
process, whose probability densityr(xW ,t) is to obey the
Fokker-Planck equation. Here, the new velocity field, nam
the forward drift of the processbW (xW ,t), replaces the previ-
ously utilized Burgers fieldvW (xW ,t):

] tr~xW ,t !5nDr~xW ,t !2¹W •@bW ~xW ,t !r~xW ,t !#. ~6!

The case of particular interest in the nonequilibrium s
tistical physics literature appears whenp(yW ,s,xW ,t) is a fun-
damental solutionof Eq. ~5! with respect to variablesyW ,s
@25,26,30#; see, however,@31# for an alternative situation
Then, the transition probability densityalso satisfies the
Fokker-Planck equation in the remainingxW ,t pair of vari-
ables. Let us emphasize that these two equations form
adjoint pair, referring to the slightly counterintuitive fo
physicists, although transparent for mathematicians@33–37#,
issue of time reversal of diffusion processes.

After adjusting Eqs. ~3! to the present context
XW (t)5*0

t bW „XW (s),s…ds1A2nWW (t), we realize@35–38# that

for any smooth functionf (xW ,t) of the random variable
XW (t) the conditional expectation value

lim
Dt↓0

1

Dt F E p~xW ,t,yW ,t1Dt ! f ~yW ,t1Dt !d3y2 f ~xW ,t !G
5~D1 f !„XW ~ t !,t…5@] t1~bW •¹W !1nD# f ~xW ,t !, ~7!

XW ~ t !5xW ,

determines the forward driftbW (xW ,t) ~if we set components o
XW instead off ) and allows one to introduce the local field o
~forward! accelerations associated with the diffusion proce
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55 1403BURGERS’ FLOWS AS MARKOVIAN DIFFUSION PROCESSES
which we constrain by demanding~see, e.g., Refs.@35–38#
for prototypes of such dynamical constraints!:

~D1
2 XW !~ t !5~D1bW !„XW ~ t !,t…

5@] tbW 1~bW •¹W !bW 1nDbW #„XW ~ t !,t…

5FW „XW ~ t !,t…, ~8!

where, at the moment arbitrary, functionFW (xW ,t) may be in-
terpreted as the external deterministic forcing applied to
diffusing system@32#. In particular, if we assume that drift
remain gradient fields, curlbW 50W , under the forcing, then
those that are allowed by the prescribed choice ofFW (xW ,t)
mustfulfill the compatibility condition~notice the conspicu-
ous absence of the standard Newtonian minus sign in
analog of Newton’s second law!

FW ~xW ,t !5¹W V~xW ,t !, ~9!

V~xW ,t !52nF ] tF1
1

2
S bW 2
2n

1¹W •bW D G .
This establishes the connection of the forward d
bW (xW ,t)52n¹F(xW ,t) with the ~Feynman-Kac; cf.@31,32#!
potentialV(xW ,t) of the chosen external force field. The latt
connection, without invoking the Feynman-Kac formula,
frequently exploited in the theory of Smoluchowski-type d
fusion processes, when the Fokker-Planck equation is tr
formed into the associated generalized diffusion equation

One of distinctive features of Markovian diffusion pro
cesses with the positive densityr(xW ,t) is that the notion of
the backwardtransition probability densityp* (y

W ,s,xW ,t) can
be consistently introduced on each finite time inter
0<s,t<T:

r~xW ,t !p* ~yW ,s,xW ,t !5p~yW ,s,xW ,t !r~yW ,s!, ~10!

so that *r(yW ,s)p(yW ,s,xW ,t)d3y5r(xW ,t) and r(yW ,s)
5*p* (y

W ,s,xW ,t)r(xW ,t)d3x. This allows one to define~cf.
@32,38–40# for a discussion of these concepts in the case
the most traditional Brownian motion and Smoluchows
type diffusion processes!

lim
Dt↓0

1

Dt FxW2E p* ~yW ,t2Dt,xW ,t !yWd3yG
5~D2XW !~ t !5bW * „X

W ~ t !,t…, ~11!

~D2 f !„XW ~ t !,t…5@] t1~bW * •¹
W !2nD# f „XW ~ t !,t….

Accordingly, the backward version of the dynamical co
straint imposed on the local acceleration field reads

~D2
2 XW !~ t !5~D1

2 XW !~ t !5FW „XW ~ t !,t…, ~12!

where under the gradient-drift field assumption, curlbW *50,
we have explicitly involved the forced Burgers equation@cf.
Eq. ~1!#:
e

is

t

s-

l

f
-

-

] tbW *1~bW * •¹
W !bW *2nDbW *5FW . ~13!

Here @32,35,36#, in view of bW *5bW 22n¹W lnr, we deal with
FW (xW ,t) previously introduced in Eqs.~9!. A notable conse-
quence is that the Fokker-Planck equation~6! can be trans-
formed to anequivalentform of

] tr~xW ,t !52nDr~xW ,t !2¹@bW * ~xW ,t !r~xW ,t !#, ~14!

which, however, describes a density evolution in the reve
sense of time.

At this point let us recall that Eqs.~5! and ~6! form a
natural adjoint pair of equations that determine the Mark
ian diffusion process in the chosen time interval@0,T#.
Clearly, an adjoint of Eq.~14! reads:

]sf ~xW ,s!5nD f ~xW ,s!2@bW * ~xW ,s!•¹W # f ~xW ,s!, ~15!

where

f ~xW ,s!5E p* ~yW ,0,xW ,s! f ~yW ,0!d3y, ~16!

to be compared with Eqs.~4!, ~5!, and the previously men
tioned passive scalar dynamics@Eq. ~2!#; see also, e.g.,@24#.
Here, manifestly, the time evolution of the backward drift
governed by the Burgers equation, and the diffusion equa
~15! is correlated@via the definition~10!# with the probability
density evolution rule~14!.

This paironly can be consistently utilized if the diffusio
process is to be driven by forced~or unforced! Burgers ve-
locity fields. Certainly, the continuity equation postulated
involve the Burgers field as the current velocity does n
hold true in this context.

Let us point out that the study of diffusion in the Burge
flow may begin from first solving the Burgers equation~12!
for a chosen external force field, next specifying the pro
ability density evolution~14!, and eventually ending with the
corresponding ‘‘passive contaminant’’ concentration dyna
ics ~15! and ~16!. All that is in perfect agreement with th
heuristic discussion of the concentration dynamics given
Ref. @16#, Chap. 7.3, where the ‘‘backward dispersion
problem with ‘‘time running backwards’’ was found nece
sary topredict the concentration.

All that means that Eqs.~1!–~3! can be reconciled in the
framework set by Eqs.~4!–~16!. Then, the ‘‘nonlinear diffu-
sion equation’’ does indeed refer to consistent stochastic
fusion processes.

We are now at the point where the Burgers equation
the related matter transport can be consistently embedde
the general probabilistic framework of the so-called Schr¨d-
inger’s boundary data~stochastic interpolation! problem
@31,32,36,37,40–41#, see also@42,43#. In this setting, the fa-
miliar Hopf-Cole transformation@2,44# of the Burgers equa-
tion into the generalized diffusion equation~yielding explicit
solutions in the unforced case! receives a useful generaliza
tion.

Indeed, in that framework@31,32#, the problem of deduc-
ing a suitable Markovian diffusion process was reduced
investigating the adjoint pairs of parabolic partial different
equations, like, e.g., Eqs.~5! and~6! or Eqs.~14! and~15!. In



ia

th

tio
e
ed

a

n
-

-
e-
-

he

at-
s.
ase
er-
he
tion

so-

cit

is
ity
If
this

,
ther
the
ilib-

n-
nd
es-

-
hout
ua-
le
he
e
na,

r-
not
of

r
etic
s
dif-
s a
all

1404 55GARBACZEWSKI, KONDRAT, AND OLKIEWICZ
the case of gradient drift fields this amounts to checking@this
imposes limitations on the admissible force field potent
cf. also formula~9!# whether the Feynman-Kac kernel

k~yW ,s,xW ,t !5E expF2E
s

t

c„v~t!,t…dtGdm~x,t !
~y,s!~v! ~17!

is positive and continuous in the open space-time area
interest, and whether it gives rise to positive solutions of
adjoint pair of generalized heat equations:

] tu~xW ,t !5nDu~xW ,t !2c~xW ,t !u~xW ,t !, ~18!

] tv~xW ,t !52nDv~xW ,t !1c~xW ,t !v~xW ,t !,

wherec(xW ,t)5(1/2n)V(xW ,t) follows from the previous for-

mulas. In the above,dm (xW ,t)
(yW ,s)(v) is the conditional Wiener

measure over sample paths of the standard Brownian mo
Solutions of Eqs.~18!, upon suitable normalization, giv

rise to the Markovian diffusion process with the factoriz
probability densityr(xW ,t)5u(xW ,t)v(xW ,t), which interpolates
between the boundary density datar(xW ,0) andr(xW ,T), with
the forward and backward drifts of the process defined
follows:

bW ~xW ,t !52n
¹W v~xW ,t !

v~xW ,t !
, ~19!

bW * ~xW ,t !522n
¹W u~xW ,t !

u~xW ,t !
,

in the prescribed time interval@0,T#. The transition probabil-
ity density of this process reads:

p~yW ,s,xW ,t !5k~yW ,s,xW ,t !
v~xW ,t !

v~yW ,s!
. ~20!

Here, neitherk @Eq. ~17!# nor p @Eq. ~20!# needs to be the
fundamental solutions of appropriate parabolic equatio
see, e.g., Ref.@31#, where an issue of differentiability is ana
lyzed.

The corresponding@sincer(xW ,t) is given# transition prob-
ability density~10! of the backward process has the form

p* ~yW ,s,xW ,t !5k~yW ,s,xW ,t !
u~yW ,s!

u~xW ,t !
. ~21!

Obviously @31,36#, in the time interval 0<s,t<T there
holds

u~xW ,t !5E u0~yW !k~yW ,s,xW ,t !d3y

and

v~yW ,s!5E k~yW ,s,xW ,T!vT~xW !d3x.
l,

of
e

n.

s

s;

By definingF*5 lnu, we immediately recover the tradi
tional form of the Hopf-Cole transformation for Burgers v
locity fields:bW *522n¹F* . In the special case of the stan
dard free Brownian motion, there holdsbW (xW ,t)50W while
bW * (x

W ,t)522n¹W lnr(xW,t).
Our discussion provides a complete identification of t

stochastic diffusion process underlyingboth the determinis-
tically forced Burgers velocity dynamics and the related m
ter transport~14!, the latter in terms of suitable density field
The generalization of the Hopf-Cole procedure to this c
involves a powerful methodology of the Feynman-Kac k
nel functions and yields exact formulas for solutions for t
forced Burgers equation. Let us stress that the connec
between the Burgers equation and the generalized~forward!
heat equation is not merely a formal trick that generates
lutions to the nonlinear problem. The forward equation~18!,
in fact, carries a complete information about the impli
backward stochastic evolution, that is, a Markov diffusion
process for which the Burgers-velocity driven transport
appropriate. Notice that the transition probability dens
~21! obeys the familiar Chapman-Kolmogorov formula.
we wish to analyze a concrete density field governed by
process, any two boundary density datar(xW ,0) andr(xW ,T)
allow one to deduce the ultimate form of the~more tradi-
tional, forward! diffusion process~20!, by means of the
Schrödinger boundary data problem@31,36#. Then, the ad-
joint pair of equations~18! gives all details of the dynamics
with ~19!–~21! as a necessary consequence. On the o
hand, the presented discussion implies a direct import of
shock-type matter density profiles to the general nonequ
rium statistical physics of diffusion-type processes.

II. PROBLEM OF NONCONSERVATIVE FORCING
OF BURGERS VELOCITY FIELDS

By embedding the Burgers equation in the Schro¨dinger
interpolation framework, we could consistently handle ra
dom transport that is governed by gradient velocity fields a
gradient-type external conservative forces. The natural qu
tion at this point is how to incorporate the nongradient~ro-
tational, for example! velocity fields and especially the non
conservative forces. This question may be addressed wit
reservations only in the context of the forced Burgers eq
tion. Recall that the Hopf-Cole transformation is applicab
only in the case of gradient velocity fields. Moreover, t
involved Schro¨dinger interpolation framework extends th
issue to the domain of nonequilibrium random phenome
where standard Smoluchowski diffusions@32# are normally
discussed in the case of conservative force fields~and drifts
in consequence!.

Remark: Strikingly, an investigation of typical nonconse
vative, e.g., electromagnetically, forced diffusions has
been much pursued in the literature, although an issue
deriving the Smoluchowski-Kramers equation~and possibly
its large friction limit! from the Langevin-type equation fo
the charged Brownian particle in the general electromagn
field has been relegated in Ref.@45#, Chap. 6.1, to the statu
of the innocent-looking exercise. On the other hand, the
fusion of realistic charges in dilute ionic solutions create
number of additional difficulties due to the apparent H



ric

if-
s

it
el
it

o
d

a
ec
on

e

n-
io
s
-

to

tia

in

en

lo
xe

sr
t
r
ies

d

re

-

.

-

dard

rifts
to

ac-
to
to-
ted

sti-
l
nal

ect

u-
as
ns,

in

o-

r
ag-

tion
r-
ft
g-
on
the
ef-

55 1405BURGERS’ FLOWS AS MARKOVIAN DIFFUSION PROCESSES
mobility in terms of mean currents induced by the elect
field ~once assumed to act upon the system!; see, e.g.,@46–
48#. In connection with the electromagnetic forcing of d
fusing charges, the gradient field assumption imposes a
vere limitation if we account for typical~nonzero circulation!
features of the classical motion due to the Lorentz force, w
or without the random perturbation component. The pur
electric forcing is simpler to handle, since it has a defin
gradient field realization; see, e.g.,@49# for a recent discus-
sion of related issues. The major obstacle with respect to
previous ~Sec. I! discussion is that, if we wish to regar
either the forceFW @Eqs.~8! and~12!# or drifts bW , bW * to have
an electromagnetic origin, then necessarily we need to p
from conservative to nonconservative fields. This subj
matter has not been significantly exploited so far in the n
equilibrium statistical physics literature.

With this additional~via the Burgers equation! motiva-
tion, let us analyze how the gradient velocity field~and con-
servative force field! assumption can be relaxed and non
theless the exact solutions to the Burgers equation can
obtained,both in the unforced and forced cases, while i
volving the primoridal Markovian diffusion process scenar

It turns out that the crucial point of our previous discu
sion lies in aproper choice of the strictly positive and con
tinuous ~in an open space-time area! function k(yW ,s,xW ,t),
which, if we wish to construct a Markov process, has
satisfy the Chapman-Kolmogorov~semigroup composition!
equation. It has led us to consider a pair of adjoint par
differential equations,~18!, as an alternative to either~5! and
~6! or ~14! and ~15!.

The Feynman-Kac integration is predominantly utilized
the quantally oriented literature dealing with Schro¨dinger op-
erators and their spectral properties@50,51#. We shall exploit
some of results of this well developed theory. The pertin
Feynman-Kac potentialc(x,t) in Eqs. ~17! and ~18! is usu-
ally assumed to be a continuous and bounded-from-be
function, but these restrictions can be substantially rela
~unbounded functions are allowed in principle! if we wish to
consider general Markovian diffusion processes and di
gard an issue of the bound state spectrum and this of
ground state of the~self-adjoint! semigroup generato
@25,30#. Actually, what we need is merely that the propert
of c(xW ,t) allow for the kernelk, ~17!, that is, positive and
continuous. This property is crucial for the Schro¨dinger
boundary-data problem analysis.

Taking for granted that suitable conditions are fulfille
@31,50#, we can immediately associate with Eqs.~18! an in-
tegral kernel of the time-dependent semigroup@the exponen-
tial operator should be understood as a time-ordered exp
sion, since in generalH(t) may not commute withH(t8) for
tÞt8#:

k~yW ,s,xW ,t !5FexpS 2E
s

t

H~t!dt D G~yW ,xW !, ~22!

whereH(t)52nD1c(t) is the pertinent semigroup gen
erator. Then, by the Feynman-Kac formula@43#, we get an
expression~17! for the kernel, which in turn yields Eqs
~19!–~22!; see, e.g.,@31#. As mentioned before, Eq.~20!
combined with Eq.~17! sets a probabilistic connection be
e-

h
y
e

ur

ss
t
-

-
be

.
-

l

t

w
d

e-
he

s-

tween the Wiener measure corresponding to the stan
Brownian motion withbW (xW ,t)50W and that for the diffusion
process with a nonvanishing driftbW (xW ,t),curlbW 50W .

Our main purpose is to generalize Eq.~22!, so that the
positive and continuous~semigroup! kernel function can be
associated with stochastic diffusion processes, whose d
are no longer gradient fields. In particular, the forcing is
be nonconservative.

Since we have no particular hints towards Feynman-K
type analysis of rotational motions, it seems instructive
invoke the framework of the Onsager-Machlup approach
wards an identification of most probable paths associa
with the underlying diffusion process@52–54#. In this con-
text, the nonconservative model system has been inve
gated in Ref.@55#. Namely, an effectively two-dimensiona
Brownian motion was analyzed, whose three-dimensio
forward drift bW (xW ),b350 in view of ]xb1Þ]yb2, has curlbW
Þ0. Then, by the standard variational argument with resp
to the Wiener-Onsager-Machlup action@53,55#,

I $L~xẆ ,xW ,t !;t1 ,t2%

5
1

2nEt1
t2H 12 @xẆ2bW ~xW ,t !#21n¹W •bW ~xW ,t !J dt,

~23!

the most probable trajectory, about which major contrib
tions from~weighted! Brownian paths are concentrated, w
found to be a solution of the Euler-Lagrange equatio
which are formally identical to the equations of motion

q̈Wcl5EW 1qẆ cl3BW ~24!

of a classical particle of unit mass and unit charge moving
an electric fieldEW and the magnetic fieldBW . The electric field
@to be compared with Eq.~9!# is given by

EW 52¹W F, ~25!

F52
1

2
~bW 212n¹W •bW !,

while the magnetic field has the only nonvanishing comp
nent in thez direction ofR3:

BW 5curlbW 5$0,0,]xb22]yb1%. ~26!

Clearly,BW 5curlAW , whereAW 5̇bW is the electromagnetic vecto
potential. The simplest example is a notorious constant m
netic field defined byb1(xW )52(B/2)x2 ,b2(xW )5(B/2)x1.

One immediately realizes that the Fokker-Planck equa
in this case is incompatible with traditional intuitions unde
lying the Smoluchowski-drift identification: the forward dri
is notproportional to an external force, but to an electroma
netic potential. Nevertheless, the variational informati
drawn from the Onsager-Machlup Lagrangian involves
Lorentz force-driven trajectory. Hence, some principal
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fects of the electromagnetic forcing are present in the diff
ing system, whose drifts display an ‘‘unphysical’’~gauge
dependent! form.

On the other hand, if we accept this ‘‘unphysical’’ ra
dom motion to yield the representation with the nongradi
drift AW : dXW (t)5AW „XW (t),t…dt1A2ndWW (t), and consider the
corresponding pair~5! and~6! of adjoint diffusion equations
with AW (xW ,t) replacingbW (xW ,t), then Eq.~8! tells us that

~D1
2 XW !~ t !5] tAW 1~AW •¹W !AW 1nDAW

52
B2

4
$x1 ,x2,0%52EW ~xW !, ~27!

whereEW (xW )5(B2/4)$x1 ,x2,0%, if calculated from Eqs.~25!.
We thus arrive at the purely electric forcing with revers

sign @if compared with that coming from the Onsage
Machlup argument~25!# and, somewhat surprisingly, there
no impact of the previously discussed magnetic motion
the level of dynamical constraints@Eqs. ~8! and ~13!#. The
adopted recipe is thus incapable of producing the magn
cally forced diffusion process that conforms with argume
of Sec. I. Our toy model is inappropriate and a more sop
ticated route must be adopted.

Below, we shall invoke the Feynman-Kac kernel idea~22!
@31#. This approach has the clear advantage of elucida
the generic issues that hamper attempts to describe the
fussion processes governed by nonconservative~and electro-
magnetic in particular! force fields. The Burgers equatio
and the problem of its nongradient solutions will appear
sidually as a byproduct of the more general discussion.

Usually, the self-adjoint semigroup generators attract
attention of physicists in connection with the Feynman-K
formula. Since electromagnetic fields provide the most c
ventional examples of nonconservative forces, we shall c
centrate on their impact on random dynamics.

A typical route towards incorporating electromagnetis
comes from quantal motivations via the minimal electrom
netic coupling recipe which preserves the self-adjointnes
the generator~Hamiltonian of the system!. As such, it con-
stitutes a part of the general theory of Schro¨dinger operators.
A rigorous study of operators of the form2n1V has be-
come a well developed mathematical discipline@50#. The
study of Schro¨dinger operators with magnetic fields, typ
cally of the form2(¹2 iAW )21V, is less advanced, althoug
specialized chapters on the magnetic field issue can be fo
in monographs devoted to functional integration metho
@50,56#, mostly in reference to seminal papers@57,58#.

From the mathematical point of view, it is desirable
deal with magnetic fields that go to zero at infinity, which
certainly acceptable on physical grounds as well. The c
stant magnetic field~see, e.g., our previous consideration!
does not meet this requirement, and its notorious usage in
literature makes us~at the moment! decline the asymptotic
assumption and inevitably fall into a number of serious co
plications.

One obvious obstacle can be seen immediately by tak
advantage of the existing results@57#. Namely, an explicit
expression for the Feynman-Kac kernel in a constant m
netic field, introduced through the minimal electromagne
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coupling assumptionH(AW )52 1
2(¹W 2 iAW )2, is available~up

to irrelevant dimensional constants!:

exp@2tH~AW !#~xW ,yW !5
B

4p sinh~ 1
2Bt!

S 1

2pt D
1/2

3expH 2
1

2t
~x32y3!

22
B

4
cothSB2 t D

3@~x22y2!
21~x12y1!

2#

2 i
B

2
~x1y22x2y1!J . ~28!

Clearly, it isnot real ~hencenonpositiveand directly at vari-
ance with the major demand in the Schro¨dinger interpolation
problem, as outlined in Sec. I!, except for directionsyW that
are parallel to a chosenxW .

Consequently, a bulk of the well developed mathemati
theory is of no use for our purposes and new techniques m
be developed for a consistent description of the electrom
netically forced diffusion processes along the lines of Sec
i.e., within the framework of Schro¨dinger’s interpolation
problem. Also, another approach is necessary to generat
lutions of the Burgers equation that are not in the gradi
form.

III. FORCING VIA FEYNMAN-KAC SEMIGROUPS

The conditional Wiener measuredm (xW ,t)
(yW ,s)(vW ) appearing in

the Feynman-Kac kernel definition~17!, if unweighted@set
c„vW (t),t…50#, gives rise to the familiar heat kernel. This,
turn, induces the Wiener measurePW of the set of all sample
paths, which originate fromyW at times and terminate~can be
located! in the Borel set APR3 after time t2s:

PW@A#5*Ad
3x*dm (xW ,t)

(yW ,s)(vW )5*Adm, where, for simplicity

of notation, the (yW ,t2s) labels are omitted andm (xW ,t)
(yW ,s) stands

for the heat kernel.
Having defined an Itoˆ diffusion XW (t)5*0

t bW (xW ,u)du

1A2nWW (t), we are interested in the analogous path m

sure:PXW @A#5*Adx*dm (xW ,t)
(yW ,s)(vW XW )5*Adm(XW ).

Under suitable~stochastic@32#! integrability conditions
imposed on the forward drift, we have granted the abso
continuityPX!PW of measures, which implies the existen
of a strictly positive Radon-Nikodym density. Its canonic
Cameron-Martin-Girsanov form@32,50#, reads:

dm~XW !

dm
~yW ,s,xW ,t !5exp

1

2n F E
s

t

bW „XW ~u!,u…dXW ~u!

2
1

2Es
t

@bW „XW ~u!,u…#2duG . ~29!

If we assume that drifts are gradient fields, curlbW 50, then
the Ito formula allows one to reduce otherwise troubleso
stochastic integration in the exponent of Eq.~29! @50,56# to
ordinary Lebesgue integrals:
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1

2nEs
t

bW „XW ~u!,u…dXW ~u!5F„XW ~ t !,t…2F„XW ~s!,s…

2E
s

t

duS ] tF1
1

2
¹W •bW D „XW ~u!,u….

~30!

After inserting Eq.~30! into Eq. ~29! and next integrating
with respect to the conditional Wiener measure, on acco
of Eq. ~9! we arrive at the standard form of the Feynman-K
kernel ~17!. Notice that Eq.~30! establishes a probabilisti
basis for logarithmic transformations~19! of forward and
backward drifts: b52n¹W lnv52n¹W F, b*522n¹W lnu
522n¹W F* . The forward version is commonly used in co
nection with the transformation of the Fokker-Planck eq
tion into the generalized heat equation,@32,59#. The back-
ward version is the Hopf-Cole transformation, mentioned
Sec. I, used to map the Burgers equation into the very s
generalized heat equation as in the previous case@2,42#.

However, presently we are interested in nonconserva
drift fields, curlbW Þ0, and in that case the stochastic integ
in Eq. ~29! is the major source of computational difficultie
@35,50,56#, for nontrivial vector potential field configura
tions. It explains the virtual absence of magnetically forc
diffusion problems in the nonequilibrium statistical physi
literature.

At this point, some steps of the analysis performed in R
@60# in the context of the ‘‘Euclidean quantum mechanic
~cf. also@37#! are extremely useful. Let us emphasize that
electromagnetic fields we utilize are always meant to be
dinary Maxwell fields withno Euclidean connotations~see,
e.g., Chap. 9 of Ref.@56# for the Euclidean version of Max
well theory!.
nt
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Let us consider a gradient drift-field diffusion proble
according to Sec. I, with Eqs.~17! and ~30! involved and
thus an adjoint pair~18! of parabolic equations completel
defining the Markovian diffusion process. Furthermore,
AW (xW ) be the time-independent vector potential for the Ma
wellian magnetic fieldBW 5curlAW . We pass from the gradien
realization of drifts to the new one, generalizing Eq.~19!, for
which the following decomposition into the gradient an
nonconservative part is valid:

bW ~xW ,t !52n¹W F~xW ,t !2AW ~xW !. ~31!

We denoteu(xW ,t)5̇exp@F(xW,t)# and admit that Eq.~31! is a
forward drift of an Itô diffusion process with a stochasti
differential dXW (t)5@2n(¹u/u)2AW #dt1A2ndWW (t). On
purely formal grounds, we deal here with an example of
Cameron-Martin-Girsanov transformation of the forwa
drift of a given Markovian diffusion process and we are e
titled to ask for a corresponding measure transformat
~29!.

To this end, let us furthermoreassumethat u(xW ,t)5u
solves a partial differential equation

] tu52nS ¹2
1

2n
AW ~xW ! D 2u1c~xW ,t !u ~32!

with the notationc(xW ,t)5(1/2n)V(xW ,t) patterned after Eq.
~9!. Then, by using the Ito calculus and Eqs.~31! and~32! on
the way ~see, e.g., Ref.@60#!, we can rewrite Eq.~29! as
follows:
er
d
.

dm~XW !

dm
~yW ,s,xW ,t !5exp

1

2n F E
s

tS 2n
¹W u

u
2AW D „XW ~u!,u…dXW ~u!2

1

2Es
tS 2n

¹W u

u
2AW D 2„XW ~u!,u…duG

5
u„XW ~ t !,t…

u„XW ~s!,s…
expF2

1

2nEs
t

@AW ~u!dXW ~u!1n~¹W •AW !„XW ~u!…du1V„XW ~u!,u…du#G , ~33!

whereXW (s)5yW ,XW (t)5xW .
More significant observation is that the Radon-Nikodym density~33!, if integrated with respect to the conditional Wien

measure, gives rise to the Feynman-Kac kernel~22! of thenon-self-adjointsemigroup~suitable integrability conditions nee
to be respected here as well@60#!, with the generatorHAW 52n@¹2(1/2n)AW (xW )#21c(xW ,t) defined by the right-hand side of Eq
~32!:

] tu~xW ,t !5HAW u~xW ,t !5F2nD1AW ~xW !•¹W 1
1

2
„¹W •AW ~xW !…2

1

4n
@AW ~xW !#21c~xW ,t !Gu~xW ,t !

52nDu~xW ,t !1AW ~xW !•¹W u~xW ,t !1cAW ~xW ,t !u~xW ,t !. ~34!
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Here

cA~xW ,t !5c~xW ,t !1
1

2
~¹AW !~xW !2

1

4n
@AW ~xW !#2. ~35!

An adjoint parabolic partner of Eq.~34! reads

] tu*52HAW
* u*5nDu*1¹W •@AW ~xW !u* #2cA~xW ,t !u*

5nF¹W 1
1

2n
AW ~xW !G2u*2c~xW ,t !u* . ~36!

Consequently, our assumptions@Eqs. ~31! and ~32!# in-
volve a generalization of the adjoint parabolic system~18! to
a new adjoint one comprising Eqs.~32! and~36!. Obviously,
the original form of Eq.~18! is immediately restored by se
ting AW 50W , and executing obvious replacementsu*→u,
u→v.

Let us emphasize again that, in contrast to Ref.@62#,
where the non-Hermitian generator 2nHAW , Eq. ~32!, has
been introduced as ‘‘the Euclidean version of the Ham
tonian’’ H522n2@¹2( i /2n)AW #21V, our electromagnetic
fields stand for solutions of the usual Maxwell equations a
are notEuclidean at all.

As long as the coefficient functions~both additive and
multiplicative! of the adjoint parabolic system~34! and ~36!
are not specified, we remain within a general theory of po
tive solutions for parabolic equations with unbounded co
ficients ~of particular importance, if we do not impose an
asymptotic falloff restrictions! @30,61–63#. The fundamental
solutions, if their existence can be granted, usually exist
space-time strips, and generally do not admit unboun
time intervals. We shall disregard these issues at the
ment, and assume the existence of fundamental solut
without any reservations.

By exploiting the rules of functional~Malliavin, varia-
tional! calculus, under an assumption that we deal with
diffusion ~in fact, Bernstein! process associated with an a
joint pair ~34! and~35!, it has been shown in Ref.@60# that if
the forward conditonal derivatives of the process exist, th
(D1XW )(t)52n(¹u/u)2AW 5bW (xW ,t), Eq. ~32!, and

~D1
2 XW !~ t !5~D1XW !~ t !3curlAW ~xW !1¹V~xW ,t !

1n curl@curlAW ~xW !#, ~37!

whereXW (0)50, XW (t)5xW , 3 denotes the vector product i
R3, and 2nc5V.

SinceBW 5curlAW 5m0HW , we identify in the above the stan
dard Maxwell equation for curlHW comprising magnetic ef-

fects of electric currents in the system: curlBW 5m0@DẆ

1s0EW 1JWext#, whereDW 5e0EW while JWext represents externa
electric currents. In case ofEW 50W , the external currents only
would be relevant. A demand curl curlAW 5¹W (¹W AW )2DAW 50
corresponds to a total absence of such currents, and the
lomb gauge choice¹W •AW 50 would leave us with harmonic
functionsAW (xW ).
-
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Consequently, a correct expression for the magnetic
implemented Lorentz force has appeared on the right-h
side of the forward acceleration formula~37!, with the for-

ward drift ~31! replacing the classical particle velocityqẆ of
the classical formula~24!.

The above discussion implicitly involves quite sophis
cated mathematics; hence it is instructive to see that we
bypass the apparent complications by directly invoking
universal definitions~7! and ~11! of conditional expectation
values, which are based on exploitation of the Itoˆ formula
only. Obviously, we assume that the Markovian diffusi
process with well defined transition probability densiti
p(yW ,s,xW ,t) andp* (y

W ,s,xW ,t), does exist.
We shall utilize an obvious generalization of canonic

definitions ~19! of both forward and backward drifts of th
diffusion process defined by the adjoint parabolic pair~18!,
as suggested by Eq.~31! with AW 5AW (xW ):

bW 52n
¹W u

u
2AW , bW *522n

¹W u*
u*

2AW . ~38!

We also demand that the corresponding adjoint equat
~34! and ~36! are solved byu andu* , respectively.

Taking for granted that identities (D1XW )(t)
5bW (xW ,t),XW (t)5xW , and (D2XW )(t)5bW * (x

W ,t) hold true, we
can easily evaluate the forward and backward accelerat
@substitute Eq.~38!, and exploit Eqs.~34! and ~36!#:

~D1bW !„XW ~ t !,t…5] tbW 1~bW •¹W !bW 1nDbW

5bW 3BW 1n curlBW 1¹W V ~39!

and

~D2bW * !„XW ~ t !,t…5] tbW *1~bW * •¹
W !bW *2nDbW *

5bW *3BW 2ncurlBW 1¹W V. ~40!

Let us notice that the forward and backward accelerat
formulasdo notcoincide as was the case before@cf. Eqs.~8!
and ~12!#. There is a definite time asymmetry in the loc
description of the diffusion process in the presence of g
eral magnetic fields, unless curlBW 50. The quantity which is
explicitly time-reversal invariant can be easily introduced

vW ~xW ,t !5 1
2 ~bW 1bW * !~xW ,t ! ~41!

⇒ 1
2 ~D1

2 1D2
2 !„XW ~ t !…5vW 3BW 1¹W V.

As yet there is no trace of Lorentzian electric forces, unl
extracted from the term¹W V(xW ,t). We shall accomplish this
step in Sec. IV.

For a probability densityu* u5r of the related Markov-
ian diffusion process@31,36#, we would have fulfilled both
the Fokker-Planck and the continuity equation
] tr5nDr2¹W (bW r)52¹W (vW r)52nDr2¹W (bW * r), as before
~cf. Sec. I!.
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In the above, Eq.~40! can be regarded as the Burge
equation with a general external magnetic~plus other exter-
nal force contributions if necessary! forcing, and its defini-
tion is an outcome of the underlying mathematical struct
related to the adjoint pair~32! and ~36! of parabolic equa-
tions.

Our construction shows that solutions of the magnetica
forced Burgers equation~40! are given in the form~38!. In
reverse, the mere assumption about the decompositio
drifts ~38! into the gradient and nongradient part implies th
the corresponding evolution equation~40! is the Burgers
equation with the nonconservative forcing. The force te
has a specific Lorentz form. Although we invoke electroma
netism, the decomposition~38! can be regarded to refer to a
abstract nongradient component. In analogy to the prev
Onsager-Machlup example, Eqs.~24!–~28!, the fictituous
Lorentz force term would arise anyway.

IV. SCHRÖDINGER’S INTERPOLATION
IN A CONSTANT MAGNETIC FIELD

AND QUANTALLY INSPIRED GENERALIZATIONS

Presently, we shall confine our attention to the simpl
case of a constant magnetic field, defined by the vector
tential AW 5$2(B/2)x2 ,1(B/2)x1 ,0%. Here, BW 5$0,0,B%,
¹W •AW 50, and curlBW 50W , which significantly simplifies for-
mulas~31!–~41!.

As emphasized before, most of our discussion was ba
on the existence assumption for fundamental solutions of
~adjoint! parabolic equations~32! and ~36!. For magnetic
fields, which do not vanish at spatial infinities~hence for our
t

cle
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of
t
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‘‘simplest’’ choice!, the situation becomes rather comp
cated. Namely, an expression for

cAW ~xW ,t !5c~xW ,t !2
B2

16n
~x1

21x2
2! ~42!

includes arepulsiveharmonic oscillator contribution.
For the existence of a well defined Markovian diffusio

process it appears necessary that a nonvanishing contrib
from an unbounded from abovec(xW ,t) would counterbalance
the harmonic repulsion. To see that thismust bethe case, let
us formally constrainu(xW ,t)5exp@F(xW,t)# to yield @in accor-
dance with Eq.~9!# the identity:

c~xW ,t !5] tF1n@¹W F#21nnF50. ~43!

Then, we deal with the simplest version of the adjoint syst
~34! and ~36! where, in view of¹W •AW 505c, there holds:

] tu52nF¹W 2
1

2n
AW G2u52nDu1AW •¹W u2

1

4n
@AW #2u,

~44!

] tu*5nF¹W 1
1

2n
AW G2u*5nDu*1AW •¹W u*1

1

4n
@AW #2u* .

With our choice, curlAW 5$0,0,B%, Eqs.~44! do notpossess
a fundamental solution, which would be well defined forall

(xW ,t)PR33R1: everything because of the harmonic repu
sion term in the forward parabolic equation. We can pro
~this purely mathematical argument is not reproduced in
present paper! that the function
k~yW ,s,xW ,t !5
B

4p sin@ 1
2B~ t2s!#

S 1

2p~ t2s! D
1/2

3expH 2
1

2~ t2s!
~x32y3!

22
B

4
cotSB2 ~ t2s! D @~x22y2!

21~x12y1!
2#2

B

2
~x1y22x2y1!J ~45!
d,
at
e,

-
the

n-
em
only when restricted to timest2s<p/B is an acceptable
example of auniquepositive ~actually, positivity extends to
timest2s<2p/B) fundamental solution of the system~43!,

~rescaled to yieldn→ 1
2 ). Here, formally, Eq.~45! can be

obtained from the expression~28! by the replacemen
AW→2 iAW .

An immediate insight into a harmonic repulsion obsta
can be achieved after anx-y plane rotation of Cartesian
coordinates: x185x1cos(vt)2x2sin(vt),x285x1sin(vt)
1x2cos(vt),x385x3,t85t, with v5B/4An. Then, Eqs.~44! get
transformed into an adjoint pair:

] t8u52nD8u2v2~x18
21x28

2!u, ~46!

] t8u*5nD8u*1v2~x18
21x28

2!u* .
Notice that the transformationv→ iv would replace repul-
sion in Eqs.~46! by harmonic attraction. On the other han
we can get rid of the repulsive term by assuming th
c(xW ,t) @Eq. ~42!# does not identically vanish. For exampl
we can formally demand that, instead of Eq.~43!,
c(xW ,t)51(B2/8n)(x1

21x2
2) plays the role of an electric po

tential. Then, harmonic attraction replaces repulsion in
final form of Eqs.~34! and ~36!.

As a byproduct, we are given a transition probability de
sity of the diffusion process governed by the adjoint syst
@cf. Eq. ~27!#:

] tu52nDu1AW •¹W u, ~47!

] tu*5nDu*1AW •¹W u* .
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with AW 5(B/2)$2x2 ,x1 ,0%. Namely, by means of the prev
ousx-y plane rotation, Eqs.~47! are transformed into a pai
of time adjoint heat equations:

] t8u52nD8u, ] t8u*5nn8u* , ~48!

whose fundamental solution is the standard heat kernel.
Finding explicit analytic solutions of rather involve

equations~34! and ~36! is a formidable task on its own, in
contrast to much simpler unforced or conservatively forc
dynamics issue.

Interestingly, we can produce a number of examples
invoking the quantum Schro¨dinger dynamics. This quantum
inspiration has been proved to be very useful in the p
@36,37#. At this point, we shall follow the idea of Ref.@31#,
where the strategy developed for solving the Schro¨dinger
boundary data problem has been applied to quantally
duced stochastic processes~e.g., Nelson’s diffusions
@35,38#!. They were considered as a particular case of
general theory appropriate for nonequilibrium statisti
physics processes as governed by the adjoint pair~18!, and
exclusively in conjunction with Born’s statistical postulate
quantum theory.

The Schro¨dinger picture quantum evolution is then co
sistently representable as a Markovian diffusion process.
that follows from the previously outlined Feynman-Kac ke
nel route@31,32,35,36,38,40,41#, based on exploiting the ad
joint pairs of parabolic equations. However, the respec
semigroup theory has been developed for pure gradient
fields, hence without reference to any impact of electrom
netism on the pertinent diffusion process, and electromag
tism is definitely ubiquitous in the world of quantum ph
nomena.

Let us start from an ordinary Schro¨dinger equation for a
charged particle in an arbitrary external electromagn
field, in its standard dimensional form. To conform with t
previous notation let us absorb the chargee and massm
parameters in the definition ofAW (xW ) and the potential
f(xW ), e.g., we considerB instead of (e/m)B andf instead
f/m. Additionally, we setn instead of (\/2m). Then, we
have

i ] tc~xW ,t !52nS ¹W 2
i

2n
AW D 2c~xW ,t !1

1

2n
f~xW !c~xW ,t !. ~49!

The standard Madelung substitutionc5exp(R1iS) al-
lows one to introduce the real functionsu5exp(R1S) and
u*5exp(R2S) instead of complex onesc,c̄. They are solu-
tions of an adjoint parabolic system~34! and~36!, where the
impact of Eq.~49! is encoded in a specific functional form o
the otherwise arbitrary potentialc(xW ,t):

c~xW ,t !5
1

2n
V~xW ,t !5

1

2n
@2Q~xW ,t !2f~xW !#, ~50!

Q~xW ,t !52n2
Dr1/2~xW ,t !

r1/2~xW ,t !
52n2$DR~xW ,t !1@¹W R~xW ,t !#2%.

The quantum probability densityr(xW ,t)5c(xW ,t)c̄(xW ,t)
5u(xW ,t)u* (x

W ,t) displays a factorizationr5uu* in terms of
d

y

st

n-

e
l

ll

e
ift
-
e-

ic

solutions of adjoint parabolic equations, which we recogn
to be characteristic for probabilistic solutions~Markov diffu-
sion processes! of the Schro¨dinger boundary data problem
~cf. Sec. I! @31,32,36,40#. It is easy to verify the validity of
the Fokker-Planck equation whose forward drift has the fo
~38!. Also, Eqs.~39! and ~40! do follow with V52Q2f.

By defining EW 52¹W f @with f utilized instead of
(e/m)f#, we immediately arrive at the complete Loren
force contribution in all acceleration formulas~before, we
have used curlBW 50):

] tbW 1~bW •¹W !bW 1nDbW 5bW 3BW 1EW 1n curlBW 12¹W Q,
~51!

] tbW *1~bW * •¹
W !bW *2nDbW *5bW *3BW 1EW 2n curlBW 12¹W Q.

Moreover, the velocity field named the current velocity

the flow, vW 5 1
2 (bW 1bW * ), enters the familiar local conserva

tion laws ~see also@32# for a discussion of how the ‘‘quan
tum potential’’Q affects such laws in case of the standa
Brownian motion and Smoluchowski-type diffusion pr
cesses!

]r52¹W ~vW r!, ~52!

] tvW 1~vW •¹W !vW 5vW 3BW 1EW 1¹W Q.

A comparison with Eqs.~33!–~43! shows that Eqs.~50!–
~53! can be regarded as the specialized version of the gen
external forcing problem with an explicit electromagne
~Lorentz force-inducing! contribution and an arbitrary term
of nonelectromagnetic origin, which we denote byc(xW ,t)
again. Obviously, c is represented in Eq.~50!, by
(1/n)Q(xW ,t).

We have therefore arrived at the following ultimate ge
eralization of the adjoint parabolic system~18!, that encom-
passes the nonequilibrium statistical physics and essent
quantum evolutions on an equal footing~with no clear-cut
discrimination between these options, as in Ref.@31#! and
gives rise to an external~Lorentz! electromagnetic forcing:

] tu~xW ,t !5F2nS ¹W 2
1

2n
AW D 22 1

2n
f~xW !1c~xW ,t !Gu~xW ,t !,

~53!

] tu* ~xW ,t !5FnS ¹W 1
1

2n
AW D 21 1

2n
f~xW !2c~xW ,t !Gu* ~xW ,t !.

A subsequent generalization encompassing time-depen
electromagnetic fields is immediate.

The adjoint parabolic pair of equations~53! can thus be
regarded to determine a Markovian diffusion process in
actly the same way as Eq.~18! did. If only a suitable choice
of vector and scalar potentials in Eqs.~53! guarrantees a
continuity and positivity of the involved semigroup kern
@take the Radon-Nikodym density of the form~33!, with
V→2f1V , and integrate with respect to the condition
Wiener measure#, then the mere knowledge of such integr
kernel suffices for the implementation of steps~18!–~22!,
with u→u* , v→u. To this end it is not at all necessary th
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k(xW ,s,yW ,t) be a fundamental solution of Eqs.~53!. A suffi-
cient condition is that the semigroup kernel is a continuo
~and positive! function. The kernel may not even be diffe
entiable; see, e.g., Ref.@31# for a discussion of that issu
which is typical for quantal situations.

After adopting Eqs.~53! as the principal dynamical ingre
dient of the electromagnetically forced Schro¨dinger interpo-
lation, we must slightly adjust the emerging acceleration f
mulas. Namely, they have the form~51!, but we need to
replace 2Q(xW ,t) by, from now an arbitrary, potentia
V(xW ,t)52nc(xW ,t). The second equation in Eqs.~53! also
takes a new form:

] tvW 1~vW •¹W !vW 5vW 3BW 1EW 1¹W ~V2Q!; ~54!

see, e.g., Ref.@32# for more detailed explanation of this ste
The presence in Eqs.~53! of the density-dependent2¹W Q
term finds its origin in the identitybW 2bW *52n¹r(xW ,t) and
is a necessary consequence of the involved~forced in the
present case! Brownian motion; see, e.g.,@39,64,65#.

Finally, the second of equations~51! with V replacing
2Q is the most general form of the Burgers equation with
external forcing, where the electromagnetic~Lorentz force!
contribution has been extracted for convenience. Solution
this equation must be sought for in the form~38!, which
generalizes the logarithmic Hopf-Cole transformation
nongradient drift fields. Equations~53! are the associate
parabolic partial differential~generalized heat! equations,
which completely determine probabilistic solutions~Markov-
ian diffusion processes! of the Schro¨dinger boundary data
~interpolation! problem. In turn, for this particular random
transport, the forced Burgers velocity fields play the role
backward drifts of the process.

V. OUTLOOK

Our discussion, albeit motivated by the issue of diffus
matter transport that is consistently driven by Burgers vel
ity fields ~this extends both to the compressible and inco
pressible cases!, has little to do with classical fluids. Th
emergence of shock pressure fronts is more natural in
compressible situation. This shock profile possibility~inher-
ry

-

in
s

-

n

of

f

-
-

e

ent to the Burgers equation! has been imported to the non
equilibrium statistical physics of random phenomena by
ploring the idea of Schro¨dinger’s interpolation problem and
revealing its connection with the Burgers dynamics. That
been the subject of Sec. I.

The next important result~a preliminary discussion of ro
tational Burgers fields can be found in Ref.@23#! amounts to
relaxing the gradient-field assumption~that is crucial for the
validity of the Hopf-Cole transformation!. In Secs. II and III
we have analyzed the ways to generalize the Feynman-
kernel strategy so that the involved~drifts! velocity fields
admit the nongradient form. Our analysis was perfomed w
rather explicit electromagnetic connotations. Equations~34!
and ~36! generalize the adjoint pair~18! to diffusion pro-
cesses with nongradient drifts~38!.

As follows from Eq.~40!, the very presence of the non
gradient term in the decomposition~38! implies that the cor-
responding evolution equation for the velocity field~back-
ward drift of the process! is the Burgers equation with th
specific Lorentz-type forcing.

Section IV extends the discussion to quantally imp
mented diffusion processes, where the minimal electrom
netic coupling is a celebrated recipe. This quantal motivat
allows to arrive at the adjoint system~53!, that incorporates
an electric contribution and allows one to define and so
the Burgers equation with the combined conservative
nonconservative~electromagnetic, in particular! forcing. Let
us emphasize again that a transformation of the Burg
equation~whatever the force term is! into a generalized dif-
fusion equation is not merely a formal linearization tric
This @1# ‘‘nonlinear diffusion equation’’ does indeed refer t
a well defined stochastic diffusion process, but a comp
information about its features is encoded in the involv
parabolic equations.

ACKNOWLEDGMENTS

Two of the authors~P.G. and R.O.! received financial
support from the KBN through research Grant No. 2 P3
057 07. P.G. would like to express his gratitude to Profes
Ana Bela Cruzeiro and Professor Jean-Claude Zambrini
enlightening discussions.
-

@1# J. M. Burgers,The Nonlinear Diffusion Equation~Reidel, Dor-
drecht, 1974!.

@2# E. Hopf, Commun. Pure Appl. Math.3, 201 ~1950!.
@3# S. F. Shandarin and B. Z. Zeldovich, Rev. Mod. Phys.61, 185

~1989!.
@4# S. Albeverio, A. A. Molchanov and D. Surgailis, Prob. Theo

Relat. Fields100, 457 ~1994!.
@5# Y. Hu and W. A. Woyczynski, inChaos—The Interplay Be

tween Stochastic and Deterministic Behaviour, edited by P.
Garbaczewski, M. Wolf, and A. Weron, Lecture Notes
Physics Vol. 457~Springer-Verlag, Berlin, 1995!, p. 135.

@6# S. N. Gurbatov and A. I. Saichev, Zh. E´ksp. Teor. Fiz .80, 689
~1981!.
@7# Z. She, E. Aurell, and U. Frisch, Commun. Math. Phys.148,
623 ~1992!.

@8# Ya. G. Sinai, Commun. Math. Phys.148, 601 ~1992!.
@9# J.D. Fournier and U. Frisch, J. Mech. Theor. Appl.2, 699

~1983!.
@10# W. A. Woyczynski, inNonlinear Waves and Weak Turbu

lence, edited by N. Fitzmauriceet al. ~Birkaäuser, Boston,
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@20# J. B. Walsh, inÉcole d’Été de Probabilités de Saint-Flour

XIV, edited by R. Carmona, H. Kesten, and J. B. Walsh, L
ture Notes in Mathematics Vol. 1180~Springer-Verlag, Berlin,
1986!, p. 265.

@21# P. G. Saffman, J. Fluid Mech.8, 273 ~1960!.
@22# A. A. Townsend, Proc. R. Soc. A209, 418 ~1951!.
@23# A. I. Saichev and W. A. Woyczynski, Physica D~to be pub-

lished!.
@24# A. I. Saichev and W. A. Woyczynski, SIAM J. Appl. Math.~to

be published!.
@25# A. Friedman,Partial Differential Equations of Parabolic Type

~Prentice-Hall, Englewood Cliffs, NJ, 1964!.
@26# W. Horsthemke and R. Lefever,Noise-Induced Transitions

~Springer-Verlag, Berlin, 1984!.
@27# H. P. McKean, inLecture Series in Differential Equations,

edited by A. K. Aziz~Van Nostrand, Amsterdam, 1969!, Vol.
II, p. 177.

@28# P. Calderoni and M. Pulvirenti, Ann. Inst. Henri Poincare´ 39,
85 ~1983!.

@29# H. Osada and S. Kotani, J. Math. Soc. Jpn.37, 275 ~1985!.
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