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We analyze the unforced and deterministically forced Burgers equation in the framework(difthgive)
interpolating dynamics that solves the so-called Sdimger boundary data problem for random matter trans-
port. This entails an exploration of the consistency conditions that allow one to interpret dispersion of passive
contaminants in Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation
ap=—V(vp), wherev =v(x,t) stands for the Burgers field andis the density of transported matter, is at
variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterization
of the diffusive transport that is governed by Burgers velocity fields. The result extends both to the approxi-
mate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible
medium. Also, in conjunction with the Born statistical postulate in quantum theory, it pertains to the proba-
bilistic (diffusive) counterpart of the Schdinger picture quantum dynamics. We give a generalization of this
dynamical problem to cases governed by nonconservative force fields when it appears indispensable to relax
the gradient velocity field assumption. The Hopf-Cole procedure has been appropriately generalized to yield
solutions in that cas¢S1063-651X97)04302-X]

PACS numbsdis): 02.50-r, 05.20-y, 03.65-w, 47.27—i

I. BURGERS VELOCITY FIELDS AND THE RELATED regard the stochastic diffusion process as a primary phenom-
STOCHASTIC TRANSPORT PROCESSES enon responsible for the emergence of Bg.and thus jus-
tifying the “nonlinear diffusion equation” phrase in this
The Burgers equatiofil,2] recently has acquired consid- context.
erable popularity in a variety of physical contekgs-20]. An Knowing the Burgers velocity fields, one is tempted to
exhaustive discussion of its role in acoustic turbulence andsk what is the particular dynami¢sf matter or probability
gravitational contexts, where the emergence of shock presiensity field$ that is consistent with the chosen Burgers ve-
sure fronts is crucial, can be found in REL7]. locity field evolution. The corresponding passive scalar
As is well known, the logarithmic Hopf-Cole transforma- (tracer or contaminant advection-in-a-flow problem
tion [2] allows one to replace the nonlinear problémonlin-  [14,11,14 is normally introduced through the parabolic dy-
ear diffusion equationl]) by a linear parabolic equation. namics:
Because of this equivalence all gradient-type solutions of the
Burgers equation are known exactly. OT+(v-V)T=vAT; 2)
At the moment we shall preserve the gradient form re-
striction for Burgers velocity fields, but consider a more gen-see, e.g.[21-23. For incompressible fluids, Eq2) coin-
eral form of the Burgers equation that accounts for an extereides with the conventional Fokker-Planck equation for the
nal force fie|dﬁ()z,t); diffusion process. This feature does not persist in the com-
pressible case.
While looking for the stochastic implementation of the
microscopic(moleculay dynamics, Eq(2) [11,16,23,24 it
is assumed that the “diffusing scalarftontaminant in the
Let us mention that many recent investigations were devotefbre of early statistical turbulence modetbeys an ltequa-
to the analysis of cusl=0 solutions that are statistically rel- tion:
evant in view of the random initial data choice and/or inclu-

dw+(v-Vv=vAv+F(Xt). 1)

sion of the random forcing teritthe random potential in the dX(t)=v(x,t)dt+ 2vdW(t), 3
related Parisi-Kardar equatigal]).
However, irrespective of whether we do or do not need X(0)=Xo—X(t) =X

the statistical input, an issue of matter transport driven by

those nonlinear velocity fields requires the knowledge of anhere the given forced Burgers velocity field is perturbed by

exact evolution of concentration and/or density fields, muchye noise term representing a molecular diffusion. In(the
in the_spmt of ear_Iy hydrodynamical studies of advgctlon andyow conventional Ito representation of diffusion-type ran-
diffusion of passive tracerl®1,22; see alsd23]. This par-

ticular issue is addressed in the present paper, under a sirﬂQm \{arlable ?((t) one epr|<.:|tIy refers to th% star_ldard
plifying assumption of nonrandom initial data and determin-Brownian motion(e.g., the Wiener process/2»W(t), in-
istic force fields. stead of the usually adopted formal white noise integral

Following the traditional motivatior{applicable both to [ gﬁ(s)ds, coming from the Langevin-type version of Egs.
incompressible and infinitely compressible liquidd), we  (3).
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Under these premises, while taking for granted thate  (b) there exists dforward) drift
is a diffusion process involved, we cannot view Egh—(3)
as completely independefdisjoint) problems: the velocity

field v cannot be quite arbitrarily inferred from E¢L) or
any other velocity-defining equation without verifying the
consistencyconditions, which would allow one to associate and (c) there exists a diffusion functiofin our case it is
Egs.(2) and (3) with a well defined random dynamics, and simply a diffusion coefficient)
Markovian diffusion in particulaf25,26.

In connection with the usage of Burgers velocity fields . 1 .. ..
(with or without external forcing which in Egs.(3) clearly a(x,s)=limg g EJ _ (y=x)%p(x,s,y,0)d%y,
are intended to replace the standdedward drift of the ly=xi=e
would-be involved Markov diffusion process, we have not . . . e
found in the literature any attempt to resolve apparent condre convent|onall_y mterpret_ed_to define a d_|ffu3|on process
tradictions arising if Eqs2) and/or(3) are defined by means 125,28 Under suitable restrictions the function
of Eq. (1). In particular, the usage of a continuity equation
ap=—V(vp), wherev =v(x,t) stands for the Burgers field g()?,s)zf p(x,s,y,Tg(y,T)d3 4
andp is the density of transported matter, is at variance with
the explicit diffusion scenario. Also, an issue of the neces- . _ e o .
sarycorrelation (cf. [16], Chap. 7.3, devoted to the turbulent sat|sf|_es the backw_ard d|ﬁu3|pn equ_atl[ulmtlce that the mi-
transport and the related dispersion of contaminabts ~ NUS Sign appears, in comparison with E2)]
tween the probabilistic Fokker-Planck dynamics of the dif- . . .. .
fusing tracer, and this of the passive tra¢eontaminant —d59(x,8)=vAg(x,8)+[b(x,8)-V]g(X,s). )
concentratiofEq. (2)], has been left aside in the literature.

Moreover, rather obvious hesitation could have been obLet us point out that the validity of E¢5) is known to be a
served in attempts to establish the most appropriate matterecessaryondition for the existence of a Markov diffusion
transport rule, if Eqs(1)—(3) are adopted. Depending on the process, whose probability densip(x,t) is to obey the
particular phenomenological departure point, one eithegokker-Planck equation. Here, the new velocity field, named
adqpts the §tandard continuity equa_t[Gm], that IS certgmly .. the forward drift of the procesﬁ(i,t), replaces the previ-
valid to a high degree of accuracy in the low viscosity limit . I
(we refer to the standard terminology that comes from vis2uSly utilized Burgers field (x,t):
cous fluid models; here; stands for the diffusion constant

b(x,s)=lim,s §L§;< (y=x)p(x,s,y,t)d%,

v|0 of Egs.(1)—(3), but incorrect on mathematical grounds ap(X,1)=vAp(X,t) = V-[b(X,t) p(X,1)]. (6)
if there is a diffusion involvednd simultaneously a solution
of Eq. (1) is interpreted as the respectigarrent velocity of The case of particular interest in the nonequilibrium sta-

the flow: &tp(i,t)= —ﬁ-[J()Z,t)p()?,t)]. Alternatively, fol- tistical physics literature appears Whp(ﬁ,s,i,t) is afun-
lowing the white noise calculus tradition telling that the sto-yamental solutiorof Eq. (5) with respect to variabley,s
chastic integral X(t) = [Lo(X(s),s)ds+ [{7(s)ds implies  [25,26,30; see, however[31] for an alternative situation.
the Fokker-Planck equation, one adof®4]: a,p(x,t)  Then, the transition probability densitglso satisfies the

=vAp()Z,t)—ﬁ[z?()?,t)p()?,t)], which is clearly problem- Fokker-Planck equation in the remaininxgt pair of vari-

atic in view of the classic McKean'’s discussion of the propa-ables. Let us emphasize that these two equations form an
gation of chaos for the Burgers equatif27—29 and the adjoint pair, referring to the slightly counterintuitive for
derivation of the stochastic “Burgers process” in this con- Physicists, although transparent for mathematic[&3s-37,

text: “the fun begins in trying to describe this Burgers mo- issue of time reversal of diffusion processes.

tion as the path of a tagged molecule in an infinite bath of After adjusting Egs. (3) to the present context,
like molecules”[27]. X(t)=f§)b(X(s),s)ds+ J2uW(t), we realize[35—3§ that

~ To put things on solid ground, let us consider a Markov-for any smooth functionf(x,t) of the random variable
ian d|ffl_J_S|on process, which is characterized by the tranS|t|or}z(t) the conditional expectation value

probability density(generally inhomogeneous in space and

time law of random displacememtp(ﬁ,s,i,t),0<s<tsT, 1 o ) )

and the probability density(x,t) of its random variable ”mﬂ[f POty t+ADf(y,t+At)d3y—f(x,t)
X(t),0<t<T. The process is completely determined by auo

these data. For clarity of discussion, we do not impose any :(D+f)(2(t),t)=[at+(6-ﬁ)+ vATf(X,1), (7)

spatial boundary restrictions, nor fix any concrete limiting
value of T which, in principle, can be moved to infinity. - R
The conditions valid for ang>0: (a) there holds X(t)=Xx,

determines the forward drifi(x,t) (if we set components of

im 1 f (» o x dx=0 X instead off) and allows one to introduce the local field of
Ust—s |y‘_;\>5p Yy.sX, ’ (forward) accelerations associated with the diffusion process,
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which we constrain by demandir(gee, e.g., Ref§35-3§
for prototypes of such dynamical constrajnts

(D2X)(t)=(D,b)(X(t),t)
=[ab+(b-V)b+vAbJ(X(t),t)
=F(X(1),1), (8)

where, at the moment arbitrary, functiéi(x,t) may be in-
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ab, +(b, -V)b, — vAb, =F. (13)
Here[32,35,36, in view of b, =b—2»V Inp, we deal with
F(x,t) previously introduced in Eq9). A notable conse-
guence is that the Fokker-Planck equatiéh can be trans-
formed to anequivalentform of

ap(X,0)=—vAp(X,t) = V[b, (x,Hp(x,0)], (14

terpreted as the external deterministic forcing applied to thd/hich, however, describes a density evolution in the reverse

diffusing systen{32]. In particular, if we assume that drifts
remain gradient fields, curk=0, under the forcing, then

those that are allowed by the prescribed choiceF (£,t)
mustfulfill the compatibility condition(notice the conspicu-

sense of time.

At this point let us recall that Eqg5) and (6) form a
natural adjoint pair of equations that determine the Markov-
ian diffusion process in the chosen time intery&,T].
Clearly, an adjoint of Eq(14) reads:

ous absence of the standard Newtonian minus sign in this

analog of Newton’s second law

F(x,1)=VQ(x,1), (9)

Q(x,t)=2v| o, + +V-b

2

22
2v

dsf(X,5)=vAf(X,5)—[b,(X,8)-VIf(X,s), (15

where

F(%,9)= f b, (5.0%,9)f (.0, (16

This establishes the connection of the forward driftto be compared with Eqg4), (5), and the previously men-

b(x,t)=2vV®d(x,t) with the (Feynman-Kac; cf[31,32)
potentiaIQ(f,t) of the chosen external force field. The latter
connection, without invoking the Feynman-Kac formula, is
frequently exploited in the theory of Smoluchowski-type dif-
fusion processes, when the Fokker-Planck equation is tran
formed into the associated generalized diffusion equation.
One of distinctive features of Markovian diffusion pro-

cesses with the positive denswi,t) is that the notion of
the backwardtransition probability densityo*(ﬁ,s,i,t) can

be consistently introduced on each finite time interval

0<s<t<T:
p(X,0) P4 (¥,8,X,1)=p(y,5,X,1)p(Y,S), (10)

so that [p(y,s)p(y,s,x,)d°y=p(x,t) and p(y,s)
=Ip, (V,s,x,t)p(x,t)d*x. This allows one to defindcf.

[32,38-40Q for a discussion of these concepts in the case o

the most traditional Brownian motion and Smoluchowski-
type diffusion processgs
i 1
im-—
Auom

i—f P, (y,t—At,x,t)yd3y

=(D_X)(t)=b, (X(t),1), (12)

(D_F)(X(1),t)=[d,+ (b, - V)= vATF(X(1),1).

Accordingly, the backward version of the dynamical con-
straint imposed on the local acceleration field reads
(D2X)(1)=(DIX)(H)=F(X(1),1), (12

where under the gradient-drift field assumption, leyrE O,
we have explicitly involved the forced Burgers equatich

Eq. (1)]:

tioned passive scalar dynamidsg. (2)]; see also, e.g[24].
Here, manifestly, the time evolution of the backward drift is
governed by the Burgers equation, and the diffusion equation
(15) is correlatedvia the definition(10)] with the probability
density evolution rulg14).

S” This paironly can be consistently utilized if the diffusion

process is to be driven by forcddr unforced Burgers ve-
locity fields. Certainly, the continuity equation postulated to
involve the Burgers field as the current velocity does not
hold true in this context.

Let us point out that the study of diffusion in the Burgers
flow may begin from first solving the Burgers equatidr2)
for a chosen external force field, next specifying the prob-
ability density evolutior(14), and eventually ending with the
corresponding “passive contaminant” concentration dynam-
ics (15) and (16). All that is in perfect agreement with the
heuristic discussion of the concentration dynamics given in
Ref. [16], Chap. 7.3, where the ‘“backward dispersion”
problem with “time running backwards” was found neces-
sary topredictthe concentration.

All that means that Eqg1)—(3) can be reconciled in the
framework set by Eq94)—(16). Then, the “nonlinear diffu-
sion equation” does indeed refer to consistent stochastic dif-
fusion processes.

We are now at the point where the Burgers equation and
the related matter transport can be consistently embedded in
the general probabilistic framework of the so-called Sdhro
inger's boundary data(stochastic interpolation problem
[31,32,36,37,40-41see alsq42,43. In this setting, the fa-
miliar Hopf-Cole transformatiof2,44] of the Burgers equa-
tion into the generalized diffusion equatigyielding explicit
solutions in the unforced caseeceives a useful generaliza-
tion.

Indeed, in that framewor[31,32, the problem of deduc-
ing a suitable Markovian diffusion process was reduced to
investigating the adjoint pairs of parabolic partial differential
equations, like, e.g., Eqé) and(6) or Egs.(14) and(15). In
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the case of gradient drift fields this amounts to checkthis
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By defining ®, =Inu, we immediately recover the tradi-

imposes limitations on the admissible force field potentialtional form of the Hopf-Cole transformation for Burgers ve-

cf. also formula(9)] whether the Feynman-Kac kernel

k(;?,s,i,t):f exp[—ftc(w(r),ﬂm dulyii(w) (A7)

is positive and continuous in the open space-time area 03
interest, and whether it gives rise to positive solutions of thet

adjoint pair of generalized heat equations:
AU(X,t)=vAu(x,t)—c(X,H)u(xt),
aw (X,t) = — vAv(X,t) +c(X,D)v(X,1),

wherec(x,t) = (1/2v)Q(x,t) follows from the previous for-

mulas. In the abovedug»’f’))(w) is the conditional Wiener

locity fields: 5* =—-2vVd, . In the special case of the stan-
dard free Brownian motion, there holdxx,t)=0 while
b, (X,t)=—2vV Inp(X).

Our discussion provides a complete identification of the
tochastic diffusion process underlyibgth the determinis-
cally forced Burgers velocity dynamics and the related mat-
er transport14), the latter in terms of suitable density fields.
The generalization of the Hopf-Cole procedure to this case
involves a powerful methodology of the Feynman-Kac ker-
nel functions and yields exact formulas for solutions for the
forced Burgers equation. Let us stress that the connection
between the Burgers equation and the generalifmward)
heat equation is not merely a formal trick that generates so-
lutions to the nonlinear problem. The forward equati8),
in fact, carries a complete information about the implicit
backward stochastic evolutiprthat is, a Markov diffusion

measure over sample paths of the standard Brownian mOt'OBrocess for which the Burgers-velocity driven transport is

Solutions of Egqs(18), upon suitable normalization, give

appropriate. Notice that the transition probability density

rise to the Markovian diffusion process with the factorized(21) obeys the familiar Chapman-Kolmogorov formula. If

probability densityp(i,t) = u(i,t)v(i,t), which interpolates
between the boundary density datéx,0) andp(i,T), with

we wish to analyze a concrete density field governed by this
process, any two boundary density da(x,0) andp(x,T)

the forward and backward drifts of the process defined agllow one to deduce the ultimate form of tiore tradi-

follows:
.. Vo(x,t)
b(x,t)=2v———, (19
v(X,t)
.. vu(x,t)
b, (x,t)=—-2y———,
u(x,t)

in the prescribed time interv@D,T]. The transition probabil-
ity density of this process reads:

L. . u(xb)
p(y,s,x,t)=k(y,s,x,t)

(20

> .

v(y,s

tional, forward diffusion process(20), by means of the
Schralinger boundary data problef31,36. Then, the ad-
joint pair of equationg18) gives all details of the dynamics,
with (19)—(21) as a necessary consequence. On the other
hand, the presented discussion implies a direct import of the
shock-type matter density profiles to the general nonequilib-
rium statistical physics of diffusion-type processes.

II. PROBLEM OF NONCONSERVATIVE FORCING
OF BURGERS VELOCITY FIELDS

By embedding the Burgers equation in the Sclimger
interpolation framework, we could consistently handle ran-
dom transport that is governed by gradient velocity fields and
gradient-type external conservative forces. The natural ques-

Here, neithek [Eq. (17)] nor p [Eg. (20)] needs to be the tion at this point is how to incorporate the nongradigt
fundamental solutions of appropriate parabolic equationstational, for examplevelocity fields and especially the non-
see, e.g., Ref31], where an issue of differentiability is ana- conservative forces. This question may be addressed without

lyzed.
The correspondinbsincep(f,t) is given| transition prob-
ability density(10) of the backward process has the form

0, (5,551 k(5% 1) 2L
u(x,t)

(21)

Obviously [31,3€], in the time interval Gs<t<T there
holds

u(x,t)= f Uo(y)k(y,s,x,t)d%

and

u(;?,s):f k(y,s,X, T)or(x)d3x.

reservations only in the context of the forced Burgers equa-
tion. Recall that the Hopf-Cole transformation is applicable
only in the case of gradient velocity fields. Moreover, the
involved Schrdinger interpolation framework extends the
issue to the domain of nonequilibrium random phenomena,
where standard Smoluchowski diffusiof2] are normally
discussed in the case of conservative force fi¢hasl drifts
in consequenge

Remark Strikingly, an investigation of typical nonconser-
vative, e.g., electromagnetically, forced diffusions has not
been much pursued in the literature, although an issue of
deriving the Smoluchowski-Kramers equati@nd possibly
its large friction limiy from the Langevin-type equation for
the charged Brownian particle in the general electromagnetic
field has been relegated in Rg45], Chap. 6.1, to the status
of the innocent-looking exercise. On the other hand, the dif-
fusion of realistic charges in dilute ionic solutions creates a
number of additional difficulties due to the apparent Hall
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mobility in terms of mean currents induced by the electrictween the Wiener measure corresponding to the standard

field (once assumed to act upon the systesee, e.9.[46—  Brownian motion withb(x,t)=0 and that for the diffusion
48]. In connection with the electromagnetic forcing of dif- rocess with a nonvanishing drlf)t(i t) curb=0

fusmg c.har.ges', the gradient field assumptlon IMPOSES & S€- 5yr main purpose is to general,izé B@2), so that the
vere limitation if we account for typicghonzero circulation ositive and continuougsemigroup kernel function can be

featu_{ﬁs otfttrr]]e clasdsmal mottlotr)l ‘1.“9 to the Lorerltz_lfﬁrce, W': ssociated with stochastic diffusion processes, whose drifts
or without the random perturbation component. The purely, .o longer gradient fields. In particular, the forcing is to
electric forcing is simpler to handle, since it has a deflnltebe nonconservative
gradient field realization; see, e.§49] for a recent discus- :

. f related i Th ior obstacle with it Since we have no particular hints towards Feynman-Kac-
sion of related ISsues. The major obstacle with respect to OL{glpe analysis of rotational motions, it seems instructive to
previous (Sec. ) discussion is that, if we wish to regard

. 4 SRR invoke the framework of the Onsager-Machlup approach to-
either the force~ [Egs.(8) and(12)] or drifts b, b, to have  wards an identification of most probable paths associated
an electromagnetic origin, then necessarily we need to pasgith the underlying diffusion proce§$2—54. In this con-
from conservative to nonconservative fields. This Subjectext, the nonconservative model System has been investi-
matter has not been significantly exploited so far in the nongated in Ref[55]. Namely, an effectively two-dimensional
equilibrium statistical physics literature. _ _ Brownian motion was analyzed, whose three-dimensional
With this additional(via the Burgers equatigrmotiva- forward drift 5()?),b3=0 in view of d,b;# d,b,, has curb

tion, If[e.t usf anal);;? how the tgradlent \t/)elomlty f'%ahd c;:on— #0. Then, by the standard variational argument with respect
servative force fieldassumption can be relaxed an none-,. ihe Wiener-Onsager-Machlup actif,55),

theless the exact solutions to the Burgers equation can be
obtained,both in the unforced and forced cases, while in- ..
volving the primoridal Markovian diffusion process scenario. ! {L(X,X,t);ty,t5}

It turns out that the crucial point of our previous discus-
sion lies in aproper choice of the strictly positive and con- 1ftefl ~ - 0 oo
tinuous (in an open space-time ajefunction k(y,s,x,t), =%, tl[z[x—b(x,t)] +vV-b(x,t) dt,
which, if we wish to construct a Markov process, has to (23)
satisfy the Chapman-Kolmogoragemigroup composition

equation. It has led us to consider a pair of adjoint partiakhe most probable trajectory, about which major contribu-
differential equations(18), as an alternative to eith€s) and  tjons from (weighted Brownian paths are concentrated, was
(6) or (14) and(19). found to be a solution of the Euler-Lagrange equations,

The Feynman-Kac integration is predominantly utilized inyhich are formally identical to the equations of motion
the quantally oriented literature dealing with Sddtirmer op-

erators and their spectral propertj&,51]. We shall exploit - = 5 o
some of results of this well developed theory. The pertinent dci=E+0QcxB (24)
Feynman-Kac potentia(x,t) in Egs.(17) and(18) is usu-
ally assumed to be a continuous and bounded-from-belowf a classical particle of unit mass and unit charge moving in
function, but these restrictions can be substantially relaxedn electric fieldE and the magnetic fielB. The electric field
(unbounded functions are allowed in principiewe wishto  [to be compared with Eq9)] is given by
consider general Markovian diffusion processes and disre-
gard an issue of the bound state spectrum and this of the E=—V, (25)
ground state of the(self-adjoin} semigroup generator
[25,30. Actually, what we need is merely that the properties 1
of c(i,t) allow for the kernelk, (17), that is, positive and d=— _(52+ 2,,6.5),
continuous. This property is crucial for the Sctirger 2
boundary-data problem analysis.

Taking for granted that suitable conditions are fulfilled While the magnetic field has the only nonvanishing compo-
[31,50, we can immediately associate with E¢s8) an in-  hent in thez direction ofR*:
tegral kernel of the time-dependent semigrtife exponen-
tial operator should be understood as a time-ordered expres- I§=curl5={0,0,axb2—aybl}. (26)

sion, since in generd (7) may not commute wittd (7') for
T# 7]

t

ex;{—f H(T)dT)
s One immediately realizes that the Fokker-Planck equation
in this case is incompatible with traditional intuitions under-

where H(7)=—vA+c(7) is the pertinent semigroup gen- lying the Smoluchowski-drift identification: the forward drift
erator. Then, by the Feynman-Kac form{i#8], we get an is notproportional to an external force, but to an electromag-
expression(17) for the kernel, which in turn yields Eqgs. netic potential. Nevertheless, the variational information
(19—(22); see, e.g.[31]. As mentioned before, Eq20) drawn from the Onsager-Machlup Lagrangian involves the
combined with Eq.(17) sets a probabilistic connection be- Lorentz force-driven trajectory. Hence, some principal ef-

Clearly,B=curlA, whereA=Db is the electromagnetic vector
potential. The simplest example is a notorious constant mag-

K(Y,S,%,t)= (y.%), (220  netic field defined by, (X) = — (B/2)xz,b,(X) = (B/2)x,.
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fects of the electromagnetic forcing are present in the diffuscoupling assumptio (A) = — 3(V —iA)2, is available(up

ing system, whose drifts display an “unphysicalgauge to irrelevant dimensional constants
dependentform.

On the other hand, if we accept this “unphysical” ran- L B 1\ 12
dom motion to yield the representation with the nongradientexr[—tH(A)](x,y)z_—l(m)
drift A: dX(t)=AX(t),H)dt+ y2rdVit), and consider the 4 sinf(3BY)
corresponding paif5) and(6) of adjoint diffusion equations 1 B B
with A(x,t) replacingb(x,t), then Eq.(8) tells us that X eXD[ - z(xg—ya)z— Zcotf(gt)
(D2X)(t)= gA+(A- V) A+ vAA X[(=y2)*+ (X1 =y1)’]
BZ .. . B
=2 aeO=-E®, @7 ~15 (X2 Xoya) ) 28)

.- ) ) Clearly, it isnot real (hencenonpositiveand directly at vari-
whereE(x) = (B/4){x;,x,,0}, if calculated from Eqs(25).  ance with the major demand in the Sétlirger interpolation

We thus arrive at the purely elec_tnc forcing with reVersedproblem, as outlined in Sec), lexcept for directiony that
sign [if compared with that coming from the Onsager-

Machlup argument25)] and, somewhat surprisingly, there is &€ parallel to a chosen _

no impact of the previously discussed magnetic motion on €onsequently, a bulk of the well developed mathematical

the level of dynamical constrainf&gs. (8) and (13)]. The theory is of no use for our purposes e_m(_j new techniques must

adopted recipe is thus incapable of producing the magnetpe _developed for_a consistent description of the electromag-

cally forced diffusion process that conforms with argumentghetically forced diffusion processes along the lines of Sec. |,

of Sec. I. Our toy model is inappropriate and a more sophis-€- Within the framework of Schdinger’s interpolation

ticated route must be adopted. problem. Also, another approach is necessary to generate so-
Below, we shall invoke the Feynman-Kac kernel id22) lutions of the Burgers equation that are not in the gradient

[31]. This approach has the clear advantage of elucidatinéorm-

the generic issues that hamper attempts to describe the dif-

fussion processes governed by nonconservdéad electro- IIl. FORCING VIA FEYNMAN-KAC SEMIGROUPS

magnetic in particularforce fields. The Burgers equation -

a_nd the problem of its nongradient solutions vyill appear re- The conditional Wiener measucmg'ts))(w) appearing in

sidually as a byproduct of the more general discussion.  the Feynman-Kac kernel definitiaf17), if unweighted[set
USL_JaIIy, the s_elf-adj_olnt semigroup generators attract th'%(<f)(r),r)=0], gives rise to the familiar heat kernel. This, in

attention of physicists in connection with the Feynman—Kactum, induces the Wiener meastPg, of the set of all sample

formula. Since electromagnetic fields provide the most con- hs. which oriai from at ti q . b
ventional examples of nonconservative forces, we shall corR@ths, which originate from at times and terminatécan be

; 3 i .

centrate on their impact on random dynamics. ocated in the Bpre[ set AcR® after time t-—s:
A ty?ical route tlowar_ds ?ncorporar;[ing _el_ectrlonlwagnetismPW[A]=fAd3xfdMg”f))(w)=fAd,u, where, for »simplicity

comes from quantal motivations via the minimal electromag- . notation, the §,t—s) labels are omitted aan(X'S)

netic coupling recipe which preserves the self-adjointness o;f the heat k | (1

the generatofHamiltonian of the systejm As such, it con- or e- ea e.rne. o - R

stitutes a part of the general theory of Salinger operators. Having defined an ltodiffusion X(t)=/ob(x,u)du

A rigorous study of operators of the formA+V has be-  +2uW(t), we are interested in the analogous path mea-

come a well developed mathematical disciplif#]. The sure:Pg[A]=fAdxfd,u(y'tS))(a3>z)=fAd,u(>Z).

. . . . i ;,
study of Schrdinger operators with magnetic fields, typi Under suitable(stochastic[32]) integrability conditions

S YVE . ,
cally of the form—(V—iA)“+V, is less advanced, although jmposed on the forward drift, we have granted the absolute
specialized chapters on the magnetic field issue can be founghntinyity P, <P,y of measures, which implies the existence
in monographs devoted to functional integration methodsyt 5 strictly positive Radon-Nikodym density. Its canonical

[50,56, mostly in reference to seminal pap¢&,58. Cameron-Martin-Girsanov forf82,50, reads:
From the mathematical point of view, it is desirable to

deal with magnetic fields that go to zero at infinity, which is
certainly acceptable on physical grounds as well. The con-
stant magnetic fieldsee, e.g., our previous consideratipns du
does not meet this requirement, and its notorious usage in the
literature makes ugat the momentdecline the asymptotic _ Eft[ﬁ(i(u) u)]2du
assumption and inevitably fall into a number of serious com- 2)s '
plications. R

One obvious obstacle can be seen immediately by taking If we assume that drifts are gradient fields, bufl0, then
advantage of the existing result§7]. Namely, an explicit the Ito formula allows one to reduce otherwise troublesome
expression for the Feynman-Kac kernel in a constant magstochastic integration in the exponent of Eg9) [50,5€ to
netic field, introduced through the minimal electromagneticordinary Lebesgue integrals:

stands

du(X) . . 1
(y,s,x,t)—expz—v

jtﬁ(i(u),u)d)?(u)

. (29
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1 (t. . R R . Let us consider a gradient drift-field diffusion problem
Z—Vf b(X(u),u)dX(u)=d(X(t),t)—P(X(s),s) according to Sec. |, with Eqg17) and (30) involved and
S thus an adjoint paif18) of parabolic equations completely
defining the Markovian diffusion process. Furthermore, let

t 1. ) .
- Ldu( o ® + EV‘b> (X(u),u). A(x) be the time-independent vector potential for the Max-
wellian magnetic field8= curlA. We pass from the gradient
(30 realization of drifts to the new one, generalizing ELp), for

After inserting Eq.(30) into Eq. (29) and next integrating which the foI_Iowing c_iecomposition into the gradient and
with respect to the conditional Wiener measure, on accourfionconservative part is valid:

of Eq.(9) we arrive at the standard form of the Feynman-Kac

kernel (17). Notice that Eq.(30) establishes a probabilistic . . ..

basis for logarithmic transformationd9) of forward and b(x,1)=2vVO(x,t) —A(X). (31
backward drifts: b=2vV Inv=2,V®, b,= —2vV Inu

=—2_VV9<I>*_ . The forward ver§ion is commonly used in con- e denote@(f,t)'zexml)(i,t)] and admit that Eq(31) is a
nection with the transformation of the Fokker-Planck equatforward drift of an Ifo diffusion process with a stochastic

tion into the generalized heat equatid82,59. The back- differential  dX(t)=[2v(V 6/ 6) — A]dt+ V2rdW(t). On
ward version is the Hopf-Cole transformati_on, mentioned in urely formal grounds, we deal here with an example of the
Sec. |, gsed to map thg Burge_rs equation into the very sa ameron-Martin-Girsanov transformation of the forward
generalized heat equation as n the previous fase) . drift of a given Markovian diffusion process and we are en-
However, p[esently we are interested in nonconsenVativiyeq o ask for a corresponding measure transformation
drift fields, curb#0, and in that case the stochastic integral(29),
in Eq. (29) is the major source of computational difficulties
[35,50,58, for nontrivial vector potential field configura-
tions. It explains the virtual absence of magnetically force
diffusion problems in the nonequilibrium statistical physics
literature. ..
At this point, some steps of the analysis performed in Ref. df=— ”( V- ZA(X)
[60] in the context of the “Euclidean qguantum mechanics”
(cf. also[37]) are extremely useful. Let us emphasize that the _ _
electromagnetic fields we utilize are always meant to be orwith the notationc(x,t) =(1/2v)Q(x,t) patterned after Eq.
dinary Maxwell fields withno Euclidean connotationésee, (9). Then, by using the Ito calculus and E¢31) and(32) on
e.g., Chap. 9 of Ref56] for the Euclidean version of Max- the way (see, e.g., Ref[60]), we can rewrite Eq(29) as
well theory). follows:

To this end, let us furthermorassumethat 0(>Z,t)=6
dsolves a partial differential equation

2
6+c(x,t)6 (32

du(X) - . 1
T( ,S,X,t)—eXpZ

tf ve o\ . .1 Ve _\*.
L 2v7—A (X(u),u)dX(u)—EJ'S ZVT—A (X(u),u)du
_6X(1),1)

-7 ex : (33
0(X(s),s)

p[ - %ft[’x(”)di(uﬁ (V- A)(X(u)du+Q(X(u),u)du]

whereX(s) =y, X(t) =x.
More significant observation is that the Radon-Nikodym dend8), if integrated with respect to the conditional Wiener
measure, gives rise to the Feynman-Kac ke(B8) of the non-self-adjointsemigroup(suitable integrability conditions need

to be respected here as w@D]), with the generatol ;= — [ V — (1/2v) A(x) ]2+ c(x,t) defined by the right-hand side of Eq.
(32):

0(X,)=HZ0(X,t)=| —vA+A(X)-V +%(€ : A(i))—%[ﬂ(i)]%r c(x,t)| 6(x,t)

=—vAO(X, 1) +A(X)-VO(X,t)+Ca(X,t) O(X,1). (34)
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Here Consequently, a correct expression for the magnetically
implemented Lorentz force has appeared on the right-hand

- - T . . 1 .. side of the forward acceleration formula7), with the for-
cax,)=c(x,t)+ 5 (VA)(x)~ 4—[A(X)]2- (35 _ _ _ " _ >
v ward drift (31) replacing the classical particle velocity of
the classical formul#24).
The above discussion implicitly involves quite sophisti-

cated mathematics; hence it is instructive to see that we can

An adjoint parabolic partner of Eq34) reads

IOy = —Hiﬁ* =vAf, +V-[AX) 0, ] calx,1) b, bypass the apparent complications by directly invoking the
1 2 universal definitiong7) and (11) of conditional gxpectation
= V+ ——AX)| 6, —c(X,1)6, . (36)  Values, which are based on exploitation of the flblomula
2v only. Obviously, we assume that the Markovian diffusion

process with well defined transition probability densities
p(y,s,x,t) andp, (y,s,x,t), does exist.

We shall utilize an obvious generalization of canonical
definitions (19) of both forward and backward drifts of the
diffusion process defined by the adjoint parabolic [§aB),

as suggested by E(31) with A=A(X):

Consequently, our assumptiofiEgs. (31) and (32)] in-
volve a generalization of the adjoint parabolic syst@®) to
a new adjoint one comprising Eq&2) and(36). Obviously,
the original form of Eq(18) is immediately restored by set-

ting A=0, and executing obvious replacemenis — u,

f—uv.

Let us emphasize again that, in contrast to Hég], v v
where the non-Hermitian generatow2;, Eq. (32), has 5:21/—0—,& b.=—2p Os —A (39)
been introduced as “the Euclidean version of the Hamil- 0 B 0

*
tonian” H=—2v4V—(i/2v)A]?+Q, our electromagnetic . . .
fields stand for solutions of the usual Maxwell equations and’V€ @lS0 demand that the corresponding adjoint equations
are notEuclidean at all. (34) and(36) are solved by# and 6, , respectively. )

As long as the coefficient functionoth additive and Taking for granted that identities D( X)(t)
multiplicative) of the adjoint parabolic syste34) and(36)  =b(x,t),X(t)=x, and O_X)(t)=b,(x,t) hold true, we
are not specified, we remain within a general theory of posican easily evaluate the forward and backward accelerations
tive solutions for parabolic equations with unbounded coef{substitute Eq(38), and exploit Eqs(34) and (36)]:
ficients (of particular importance, if we do not impose any

asymptotic falloff restrictions[30,61—-63. The fundamental (D, b)(X(t),t)=3,b+(b-V)b+ vAb
solutions, if their existence can be granted, usually exist on o oL
space-time strips, and generally do not admit unbounded =bXB+ v curB+V(Q (39

time intervals. We shall disregard these issues at the mo-
ment, and assume the existence of fundamental solutiorend
without any reservations.

By exploiting the rules of functiona(Malliavin, varia- (D_b,)(X(t),t)=4,b, +(b, - V)b, — vAb,
tional) calculus, under an assumption that we deal with a . R
diffusion (in fact, Bernsteih process associated with an ad- =b, XB—vcurB+VQ. (40)

joint pair (34) and(35), it has been shown in R€60] thatif
the forward conditonal derivatives of the process exist, then Let us notice that the forward and backward acceleration

(D, X)(t)=2v(V 0/ 6)—A=b(x,t), Eq.(32), and formulasdo notcoincide as was the case befgoé. Egs.(8)
and (12)]. There is a definite time asymmetry in the local
(D2X)(t)= (D, X)(t) X curlA(x) + VQ(X,1) description of the diffusion process in the presence of gen-
+ ] >
! eral magnetic fields, unless cBe- 0. The quantity which is
+v curl[ curlA(x)], (37)  explicitly time-reversal invariant can be easily introduced:
whereX(0)=0, X(t)=X, X denotes the vector product in v(X,t)=3(b+b,)(X,1) (41)
R3 and 2c=Q.
SinceB = curlA= uoH, we identify in the above the stan- =1(D2+D2)(X(t))=vXB+VQ.

dard Maxwell equation for cud comprising magnetic ef-
: As yet there is no trace of Lorentzian electric forces, unless

fects of electric currents in the system: @& uo[D > OrH =, Ul
extracted from the ternVQ(x,t). We shall accomplish this

+ 0 oE+J.,.], whereD = ,E while J. represents external )
ToE + Joxil €0 ext feP step in Sec. IV.

electric currents. In case &= 0, the external currents only For a probability density, 6=p of the related Markov-
*

would be relevant. A demand curl cBrkV(VA)—AA=0  jan diffusion proces§31,36, we would have fulfilled both
corresponds to a total absence of such currents, and the Core  Fokker-Planck and the continuity equations:

lomb gauge choic& - A=0 would leave us with harmonic 4,p=vAp—V (Bp)=—V(0p)=—rAp—V(b, p), as before
functionsA(X). (cf. Sec. ).
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In the above, Eq(40) can be regarded as the Burgers “simplest” choice), the situation becomes rather compli-
equation with a general external magndtus other exter- cated. Namely, an expression for

nal force contributions if necessarforcing, and its defini- ,

tion is an outcome of the underlying mathematical structure T (o ) B_ 2.2
related to the adjoint paif32) and (36) of parabolic equa- CAX.)=c(x.1) 16v(X1+X2) (42)
tions.

Our construction shows that solutions of the magneticallyincludes arepulsiveharmonic oscillator contribution.
forced Burgers equatiof0) are given in the form(38). In For the existence of a well defined Markovian diffusion

reverse, the mere assumption about the decomposition HFOcess it appears necessary that a nonvanishing contribution
drifts (38) into the gradient and nongradient part implies thatfrom an unbounded from abowgx,t) would counterbalance

the corresponding evolution equatidd0) is the Burgers the harmonic repulsion. To see that thisist bethe case, let
equation with the nonconservative forcing. The force termys formally constrairg(x,t) = exd ®(xt)] to yield [in accor-

has a specific Lorentz form. Although we invoke electromagdance with Eq(9)] the identity:

netism, the decompositiai38) can be regarded to refer to an

abstract nongradient component. In analogy to the previous c(x,t)=a,®+ [VP ]2+ vAD=0. (43
Onsager-Machlup example, Eq&4)—(28), the fictituous
Lorentz force term would arise anyway. Then, we deal with the simplest version of the adjoint system

(34) and (36) where, in view ofV.A=0=c, there holds:

2

" , . 1. S - 1 .
IV. SCHRODINGER’S INTERPOLATION 90=—v|V— —A| 9=—vA0+A-Vo——[A]%,
IN A CONSTANT MAGNETIC FIELD 2v 4v

AND QUANTALLY INSPIRED GENERALIZATIONS (44)

Presently, we shall confine our attention to the simplest . 1.7 .. 1 .,
case of a constant magnetic field, defined by the vector po- %0x =¥/ V+ 5-A| 0, =vA0, +A-VO, +7-[A]%0, .
tential A={—(B/2)x,,+(B/2)x;,0}. Here, B={0,0B}, A
V.A=0, and cufB=0, which significantly simplifies for- With our choice, cuh={0,0B}, Egs.(44) do notpossess
mulas(31)—(41). a fundamental solution, which would be well defined &ir

As emphasized before, most of our discussion was base(d?,t) e R®XR": everything because of the harmonic repul-
on the existence assumption for fundamental solutions of theion term in the forward parabolic equation. We can prove
(adjoiny parabolic equation$32) and (36). For magnetic (this purely mathematical argument is not reproduced in the
fields, which do not vanish at spatial infinitidsence for our  present paperthat the function

) ) 1 1/2
k =
s 0= sir[%B(t—s)](z’T(“s))

1 ) B B ) ’ B 45
X ex —m(x3_)’3) —2¢0 E(t_s) [(X2—Y2)“+(X1—Y1) ]_E(lez_xzh) (45)

only when restricted to times—s</B is an acceptable Notice that the transformatiom—iw® would replace repul-
example of auniquepositive (actually, positivity extends to sion in Egs.(46) by harmonic attraction. On the other hand,
timest—s<2/B) fundamental solution of the syste@#3), @ we can get rid of the repulsive term by assuming that
(rescaled to yieldv—3). Here, formally, Eq.(45) can be c(x,t) [Eq. (42)] does not identically vanish. For example,
obtained from the expressiof28) by the replacement we can formally demand that, instead of E43),
A——iA. c(x,t) =+ (B?/8v)(x?+x3) plays the role of an electric po-

An immediate insight into a harmonic repulsion obstacletential. Then, harmonic attraction replaces repulsion in the
can be achieved after ax-y plane rotation of Cartesian final form of Eqs.(34) and (36).

coordinates: X1 =X1C0S(t) —X;Sin(wt), X, =X, Sin(wt) Asa byprlodu.ct, we are given a transition probapility den-
+X,COS(t), X5 =Xg,t' =t, with w=B/4\/v. Then, Eqs(44) get sity of the diffusion process governed by the adjoint system
transformed into an adjoint pair: [cf. Eq.(27)]:

0y 0=— VA" — 0?(X}?+x52) 0, (46) a0=—vAO+A-V, (47)

at’e*:VA,G*_F“’Z(X:;.Z_‘_XEZ)&*- 5t(9*=VAO*+/&-€0*.
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with A= (B/2){—x,,%;,0}. Namely, by means of the previ-
ousx-y plane rotation, Eq947) are transformed into a pair
of time adjoint heat equations:
r9tu9=—VA'6’, (')]tra*:VA,e* y (48)

whose fundamental solution is the standard heat kernel.

Finding explicit analytic solutions of rather involved
equations(34) and (36) is a formidable task on its own, in
contrast to much simpler unforced or conservatively force
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solutions of adjoint parabolic equations, which we recognize
to be characteristic for probabilistic solutiofidarkov diffu-
sion processesof the Schrdinger boundary data problem
(cf. Sec. ) [31,32,36,4Q It is easy to verify the validity of
the Fokker-Planck equation whose forward drift has the form
(38). Also, Egs.(39) and(40) do follow with Q=2Q— ¢.

By defining E=—V¢ [with ¢ utilized instead of
(e/m)¢], we immediately arrive at the complete Lorentz

rce contribution in all acceleration formuldbefore, we

C{,O
dynamics issue. ave used cud=0):

Interestingly, we can produce a number of examples by
invoking the guantum Schdinger dynamics. This quantum
inspiration has been proved to be very useful in the past
[36,37]. At this point, we shall follow the idea of Reff31],
where the strategy developed for solving the Sdhrger
38gggargtgﬁgsﬁgoﬂirgceh;seé?ge‘ n ﬁggi?],éo g#figtlf(i)lrllys InI'\/IoreoverL the Yeltzcity field named the current velocity of
[35,38). They were considered as a particular case of théhe flow,v=3(b+b,), enters the familiar local conserva-
general theory appropriate for nonequilibrium statisticaltion laws (see alsd32] for a discussion of how the “quan-
physics processes as governed by the adjoint @38y, and tum potential” Q affects such laws in case of the standard
exclusively in conjunction with Born'’s statistical postulate in Brownian motion and Smoluchowski-type diffusion pro-
quantum theory. cessep

The Schrdinger picture quantum evolution is then con-
sistently representable as a Markovian diffusion process. All
that follows from the previously outlined Feynman-Kac ker-
nel route[31,32,35,36,38,40,41based on exploiting the ad-
joint pairs of parabolic equations. However, the respective
semigroup theory has been developed for pure gradient drift A comparison with Eqs(33)—(43) shows that Eq950)—
fields, hence without reference to any impact of electromag¢53) can be regarded as the specialized version of the general
netism on the pertinent diffusion process, and electromagnexternal forcing problem with an explicit electromagnetic
tism is definitely ubiquitous in the world of quantum phe- (Lorentz force-inducingcontribution and an arbitrary term
nomena. of nonelectromagnetic origin, which we denote bgx,t)

Let us start from an ordinary Schiimger equation for a again. Obviously, ¢ is represented in Eq.(50), by
charged particle in an arbitrary external eIectromagnetic(llv)Q(; t)

field, in its standard dimensional form. To conform with the " \y/2",ave therefore arrived at the following ultimate gen-

previous notation let us absorb the chag@nd massn  gp4ji7ation of the adjoint parabolic systeit8), that encom-
parameters in the definition oA(x) and the potential passes the nonequilibrium statistical physics and essentially
¢>(>?), e.g., we consideB instead of &m)B and ¢ instead quantum evolutions on an equal footitgith no clear-cut
¢/m. Additionally, we setv instead of i/2m). Then, we discrimination between these options, as in Ré&fl]) and

T

a0+ (b-V)b+vAb=bXxB+E+v curlB+2VQ,

(51)

ab, + (b, - V)b, —vAb, =b, X B+E— v curlB+2VQ.

ap=—V(vp), (52)

o+ (v-VYo=0XB+E+VQ.

have gives rise to an externdlorent? electromagnetic forcing:
_ﬁ_vaiezﬁleé 9_€1ﬁ21ﬁﬁﬁ
19X, ) == v| V=—A] (X, + o= () d(X1). (49 RO =| 1| V=R | =2 d(x)+e(x.t) | 8(x.1),
(53
The standard Madelung substitutiofi=expR+iS) al-
lows one to introduce the real functios=expR+S) and - .o1.\% 1 . - -
0, =expR—9 instead of complex ones, 4. They are solu-  9t0x (X D= V| VAZZAT + 52 d(X) — (X, 1) | 04 (X, 1).

tions of an adjoint parabolic syste(84) and(36), where the
impact of Eq.(49) is encoded in a specific functional form of

the otherwise arbitrary potentialX,t):

A subsequent generalization encompassing time-dependent
electromagnetic fields is immediate.

The adjoint parabolic pair of equationiS3) can thus be
regarded to determine a Markovian diffusion process in ex-
actly the same way as E@L8) did. If only a suitable choice
of vector and scalar potentials in Eq&3) guarrantees a
continuity and positivity of the involved semigroup kernel

= = 2v{AR(X,) +[VR(X,1) ]2} [take the Radon-Nikodym density of the for(83), with
praxt Q——¢+Q , and integrate with respect to the conditional
Wiener measurg then the mere knowledge of such integral
kernel suffices for the implementation of stefi8)—(22),
with u— 6, , v— 6. To this end it is not at all necessary that

- 1 - 1 - -
CXD)= 5o QXD =5 [2Q(X D~ $(X)], (50

Q(x t)=2u2Apl/2()Z't)

The quantum probability density(x,t) = (X, t) (X,t)
= 6(x,t) 6, (x,t) displays a factorizatiop= 66, in terms of
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k(x,s,y,t) be a fundamental solution of Eqg3). A suffi- ~ ent to the Burgers equatiphas been imported to the non-
cient condition is that the semigroup kernel is a continuougquilibrium statistical physics of random phenomena by ex-
(and positive function. The kernel may not even be differ- ploring the idea of Schutinger’s interpolation problem and
entiab|e; see, e.g., ReIf31:| for a discussion of that issue revealing its connection with the BUrgerS dynamiCS. That has
which is typical for quantal situations. been the subject of Sec. I.

After adopting Eqs(53) as the principal dynamical ingre- The next important resula preliminary discussion of ro-
dient of the electromagnetically forced Sctiiger interpo-  tational Burgers fields can be found in REZ3]) amounts to
lation, we must slightly adjust the emerging acceleration forrelaxing the gradient-field assumptidihat is crucial for the
mulas. Name|y, they have the for(ﬁl), but we need to Val|d|ty of the HOpf-COIe tranSformation!n Secs. Il and 1l
replace D(x,t) by, from now an arbitrary, potential we have analyzed the ways to generalize the Feynman-Kac

Sy - L kernel strategy so that the involvedrifts) velocity fields
Q(x,t)=2vc(x,t). The second equation in EQES3) also  5qmit the nongradient form. Our analysis was perfomed with
takes a new form:

rather explicit electromagnetic connotations. Equati(@7
and (36) generalize the adjoint paiil8) to diffusion pro-
cesses with nongradient drift88).

see, e.g., Ref32] for more detailed explanation of this step.  AS follows from Eq.(40), the very presence of the non-

. . = gradient term in the decompositid88) implies that the cor-
The presence in Eqs53) of the density-dependent VQ responding evolution equation for the velocity figlack-

term finds its origin in the identith—b, =2vVp(x,t) and  \yard drift of the procegsis the Burgers equation with the
is a necessary consequence of the involvedced in the specific Lorentz-type forcing.
present cageBrownian motion; see, e.9.39,64,63. Section IV extends the discussion to quantally imple-
Finally, the second of equatior(§1) with Q1 replacing  mented diffusion processes, where the minimal electromag-
2Q is the most general form of the Burgers equation with ametic coupling is a celebrated recipe. This quantal motivation
external forcing, where the electromagnefiorentz force  gjlows to arrive at the adjoint syste(B3), that incorporates
contribution has been extracted for convenience. Solutions ¢, electric contribution and allows one to define and solve
this equation must be sought for in the for88), which  the Burgers equation with the combined conservative and
generalizes the logarithmic Hopf-Cole transformation tononconservativéelectromagnetic, in particulaforcing. Let
nongradient drift fields. Equation(3) are the associated ys emphasize again that a transformation of the Burgers
parabolic partial differential(generalized heatequations, equation(whatever the force term)isnto a generalized dif-
which completely determine probabilistic solutidiMarkov-  fysion equation is not merely a formal linearization trick.
ian diffusion processgsof the Schrdinger boundary data Thjs[1] “nonlinear diffusion equation” does indeed refer to
(interpolation problem. In turn, for this particular random 4 well defined stochastic diffusion process, but a complete

transport, the forced Burgers velocity fields play the role ofinformation about its features is encoded in the involved
backward drifts of the process. parabolic equations.

o0+ (0-V)o=vXB+E+V(Q—0Q); (54)
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